Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.800
2.
Pediatr Transplant ; 28(4): e14780, 2024 Jun.
Article En | MEDLINE | ID: mdl-38766999

BACKGROUND: The aims of this study are to report our experience with treosulfan-based conditioning regimens for patients with non-malignant hematologic conditions, correlating clinical outcomes at different time points post-transplant with treosulfan exposure (AUC). METHODS: This study was a single-center observational study investigating overall survival (OS), disease-free survival (DFS), and event-free survival (EFS) end-points post-transplant. The consequences of treosulfan AUC with respect to toxicity, correction of underlying disease, and long-term chimerism were also explored using pharmacokinetic analysis. RESULTS: Forty-six patients received 49 transplants with treosulfan and fludarabine-based conditioning between 2005 and 2023. Twenty-four patients also received thiotepa. Donor chimerism was assessed on either whole blood or sorted cell lines at different time points post-transplant. Thirty-nine patients received treosulfan pharmacokinetic assessment to evaluate cumulative AUC, with five infants receiving real-time assessment to facilitate daily dose adjustment. OS, DFS, and EFS were 87%, 81%, and 69%, respectively. Median follow-up was 32.1 months (range 0.82-160 months) following transplant. Lower EFS was associated with patient age (<1 year; p = .057) and lower cumulative treosulfan dose (<42 g/m2; p = .003). Stable donor chimerism in B-cell, NK-cell, and granulocyte lineages at 1-year post-transplant were more prevalent in patients receiving thiotepa conditioning. Two infants required daily dose adjustment to treosulfan to avoid high AUC. CONCLUSIONS: Excellent clinical outcomes and stable chimerism were observed in this patient series. The addition of thiotepa conferred no significant toxicity and trended toward sustained ongoing donor engraftment. Correlating treosulfan AUC with long-term patient outcomes is required.


Busulfan , Hematopoietic Stem Cell Transplantation , Transplantation Conditioning , Humans , Busulfan/analogs & derivatives , Busulfan/therapeutic use , Busulfan/pharmacokinetics , Busulfan/administration & dosage , Transplantation Conditioning/methods , Male , Hematopoietic Stem Cell Transplantation/methods , Female , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Treatment Outcome , Retrospective Studies , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Vidarabine/administration & dosage , Thiotepa/therapeutic use , Thiotepa/administration & dosage , Thiotepa/pharmacokinetics , Disease-Free Survival , Follow-Up Studies , Hematologic Diseases/therapy , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/administration & dosage
3.
Cancer Med ; 13(10): e7292, 2024 May.
Article En | MEDLINE | ID: mdl-38752476

INTRODUCTION: Type of conditioning regimen impacts the outcome of patients who undergo allogeneic HSCT since graft versus host disease (GVHD), infections, regimen related toxicities (RRT) are important causes of post-transplant mortality. Despite the RRT profile of busulfan, it is frequently used worldwide. Treosulfan has advantages in terms of dose of administration, lower incidence of sinusoidal obstruction syndrome and lower neurotoxicity. We retrospectively investigated outcomes of patients who underwent allogeneic HSCT with treosulfan or busulfan based conditioning regimens in our institution. METHODS: Treosulfan was administered to 94 patients while 85 patients received busulfan. Our outcomes were RRT, chronic and acute GVHD, relapse related mortality (RRM), non-relapse mortality, and fungal infection. The clinical follow up data, regarding the primary and secondary endpoints of our study, of the patients who received treosulfan or busulfan based conditioning regimens were statistically analyzed. RESULTS: The median follow-up was 14 months for the treosulfan group while it was 11 months for the busulfan group (p = 0.16). RRT was 11.7% and 7.1% for treosulfan and busulfan respectively. The incidence of extensive chronic GVHD was less frequent in the treosulfan group compared to the busulfan group (15.7% vs. 32.1%) (p < 0.001). The incidence of acute GVHD (Grade 3 or higher) was 32.2% in the treosulfan group while it was 31.6% in the busulfan group. The RRM was 17% in the treosulfan group while it was 34% in the busulfan group. The non-relapse mortality was 35.5% and 29.4% in the treosulfan group and in the busulfan group respectively (p = 0.962). CONCLUSION: Treosulfan, with a lower RRM, lower chronic GVHD incidence and with a similar RRT profile appears to be a safe alternative to busulfan.


Busulfan , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Transplantation Conditioning , Transplantation, Homologous , Humans , Busulfan/analogs & derivatives , Busulfan/therapeutic use , Busulfan/adverse effects , Busulfan/administration & dosage , Transplantation Conditioning/methods , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Adult , Middle Aged , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/epidemiology , Retrospective Studies , Young Adult , Adolescent , Treatment Outcome , Aged , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/adverse effects
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732137

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Busulfan , Interleukin-1beta , Spermatogenesis , Animals , Busulfan/pharmacology , Spermatogenesis/drug effects , Male , Interleukin-1beta/metabolism , Mice , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/cytology , Testis/metabolism , Testis/drug effects , Testis/cytology , Leydig Cells/metabolism , Leydig Cells/drug effects , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Cells, Cultured
5.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Article En | MEDLINE | ID: mdl-38657265

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Fetal Hemoglobin , Gene Editing , Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Antigens, CD34 , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Blood Transfusion , Busulfan/therapeutic use , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Editing/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Repressor Proteins/genetics , Transplantation Conditioning , Transplantation, Autologous , Myeloablative Agonists/therapeutic use , North America , Europe
6.
Theranostics ; 14(6): 2622-2636, 2024.
Article En | MEDLINE | ID: mdl-38646657

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Busulfan , Ferroptosis , NAD , Sirtuin 2 , Spermatogenesis , Animals , Busulfan/pharmacology , Male , Spermatogenesis/drug effects , Mice , NAD/metabolism , Ferroptosis/drug effects , Sirtuin 2/metabolism , Sirtuin 2/genetics , Disease Models, Animal , Testis/metabolism , Testis/drug effects , Azoospermia/drug therapy , Azoospermia/metabolism , Azoospermia/chemically induced
7.
Hematology ; 29(1): 2335417, 2024 Dec.
Article En | MEDLINE | ID: mdl-38568018

Objectives: Primary graft failure (pGF) after hematopoietic stem-cell transplant is associated with considerable morbidity and mortality. The incidence in haplo-HSCT has been reported to be between 0% and 30%. In 2018, we identified a pGF incidence of 35% in our pediatric haplo-HSCT recipients with hematologic malignancies, which motivated us to enact changes to the conditioning regimen.Methods: We performed a single-center prospective, pre-post study of consecutive patients under 16 years with hematologic malignancies, from January 2015 to December 2022 who received a haplo-HSCT. Twenty-six pediatric patients received a haplo-HSCT before September 2018 (G1) and 36 patients after (G2). The main conditioning regimen for G1 was myeloablative with Flu/Cy/Bu, and for G2 the main regimen was reduced intensity Flu/Cy/Mel/TBI2.Results: Nine patients (35%) in G1 had primary graft failure, while in G2 there were no patients with pGF. The median follow-up for G1 was 15.9 months, and for G2 was 24.8 months, with an estimated overall survival at 12 months of 63% (95% CI 47-76) versus 85% (95% CI 73-93), and at 24 months of 47% (95% CI 31-64) versus 70% (95% CI 54-82) respectively (p = .007).Conclusion: After September 2018 conditioning regimen modifications were implemented with the objective of reducing primary failure, consisting mainly of switching from busulfan to melphalan as the alkylating agent of choice, and adding, when clinically possible TBI. Primary failure has been significantly reduced in our institution since then.


Hematologic Neoplasms , Melphalan , Humans , Child , Prospective Studies , Transplantation, Haploidentical , Busulfan
8.
Pediatr Transplant ; 28(3): e14728, 2024 May.
Article En | MEDLINE | ID: mdl-38600717

BACKGROUND: Although neurotoxicity is a major adverse event associated with busulfan, little information is available regarding the association between drug interactions and neurological symptoms during busulfan-based regimens. This study evaluated the association between prophylactic echinocandins and neurological complications in patients receiving busulfan-containing conditioning regimens for stem cell transplantation. METHODS: We retrospectively included consecutive patients who administered intravenous busulfan as a conditioning regimen at our facility between 2007 and 2022. Prophylactic echinocandin use was defined as the use of an echinocandin antifungal drug to prevent invasive fungal disease in SCT recipients. The primary outcome was the incidence of neurological complications within 7 days of busulfan initiation and was compared between the echinocandin group (patients received prophylactic echinocandin) and nonechinocandin group (patients received prophylactic antifungal drugs other than echinocandin and those without antifungal prophylaxis). RESULTS: Among the 59 patients included in this study, the incidence of neurological complications in the echinocandin (n = 26) and nonechinocandin groups (n = 33) was 30.8% and 63.6%, respectively. We observed a negative association between prophylactic echinocandin use and the development of neurological complications after adjusting for the propensity score for receiving prophylactic echinocandins (adjusted odds ratio 0.294, 95% confidence interval 0.090 to 0.959). We observed a lower incidence of neurological complications in the echinocandin group than in the nonechinocandin group. CONCLUSION: Our results suggested that the choice of antifungal prophylaxis is associated with busulfan neurotoxicity.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Nervous System Diseases , Humans , Busulfan/adverse effects , Retrospective Studies , Antifungal Agents/therapeutic use , Echinocandins/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Stem Cell Transplantation , Nervous System Diseases/etiology , Transplantation Conditioning/adverse effects , Transplantation Conditioning/methods , Graft vs Host Disease/etiology
9.
Pediatr Transplant ; 28(3): e14735, 2024 May.
Article En | MEDLINE | ID: mdl-38602169

OBJECTIVE: We investigated the safety and efficacy of haploidentical stem cell transplantation (SCT) in pediatric patients with X-linked adrenoleukodystrophy (ALD). METHODS: A retrospective analysis of transplantation data from 29 cases of ALD, treated between December 2014 and April 2022, was conducted. Neurologic function scores (NFS) were assessed. The conditioning regimen was busulfan 9.6 mg/kg, cyclophosphamide 200 mg/kg, and fludarabine 90 mg/m2 (BFC). Graft-versus-host disease prophylaxis consisted of anti-human thymocyte globulin, cyclosporine A, mycophenolate mofetil, and short course of methotrexate. RESULTS: Among the 29 cases, 14 cases (NFS = 0) were asymptomatic, and 15 (NFS ≥ 1) were symptomatic. The median age at SCT was 8 years (range: 4-16 years); the median follow-up time was 1058 days (range: 398-3092 days); 28 cases were father donors and 1 case was a grandfather donor. Hematopoietic reconstitution was successful in all patients, and all of them achieved complete donor chimerism at the time of engraftment. The leading cause of death was still primary disease progression (n = 4). Survival free of major functional disabilities was 100% in asymptomatic patients versus 66.67% in the symptomatic group (p = .018). CONCLUSION: BFC regimen used in haploidentical SCT was administered safely without major transplant-related complications even in symptomatic patients, and neurological symptoms were stabilized after SCT.


Adrenoleukodystrophy , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Vidarabine/analogs & derivatives , Humans , Child , Child, Preschool , Adolescent , Busulfan/therapeutic use , Retrospective Studies , Graft vs Host Disease/etiology , Transplantation Conditioning/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Cyclophosphamide/therapeutic use , Antilymphocyte Serum/therapeutic use , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/complications
10.
Pediatr Blood Cancer ; 71(7): e30988, 2024 Jul.
Article En | MEDLINE | ID: mdl-38613166

BACKGROUND: Hematopoietic cell transplantation (HCT) is an established curative therapy for transfusion-dependent thalassemia (TDT) and sickle cell disease (SCD). The latest American Society of Hematology guidelines recommend myeloablative preparative regimen in patients under 18 years of age. PROCEDURE: The objective was to demonstrate safety and efficacy of a reduced intensity conditioning (RIC) regimen including high-dose fludarabine, anti-thymocyte globulin, and targeted busulfan as a single alkylator to sub-myeloablative exposures. RESULTS: Between 2012 and 2021, 11 patients with SCD and five patients with TDT and matched related donor (MRD) HCT were included. The median age at transplantation was 8.3 years (range: 3.7-18.8 years). The median administered busulfan AUC was 67.4 mg/L×h (range: 60.7-80 mg/L×h). Overall survival was 93.8% and event-free survival 87.5% with one engrafted SCD patient with pre-existing moyamoya disease succumbing after drainage of a subdural hematoma. One SCD patient developed a secondary graft failure and was treated with a second HCT. Myeloid chimerism was full in all other patients with a median follow-up time of 4.1 years (range: 2.0-11.1 years), whereas T-cell donor chimerism was frequently mixed. CONCLUSION: This RIC conditioning followed by MRD HCT is sufficiently myeloablative to cure pediatric patients with hemoglobinopathies without the need for additional total body irradiation or thiotepa.


Busulfan , Hematopoietic Stem Cell Transplantation , Hemoglobinopathies , Transplantation Conditioning , Humans , Busulfan/administration & dosage , Busulfan/therapeutic use , Transplantation Conditioning/methods , Hematopoietic Stem Cell Transplantation/methods , Child, Preschool , Child , Male , Female , Adolescent , Hemoglobinopathies/therapy , Follow-Up Studies , Survival Rate , Graft vs Host Disease/etiology , Graft Survival , Vidarabine/analogs & derivatives , Vidarabine/administration & dosage , Vidarabine/therapeutic use , Anemia, Sickle Cell/therapy , Tissue Donors , Prognosis , Thalassemia/therapy
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124232, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38593538

The present study aims to identify spermatogenesis in testicular seminiferous tubules (ST) and testicular tissue of adult normal and busulfan-treated mice utilizing PCA and Raman spectroscopy. Raman measurements were conducted on single tubules and testes samples from adult and immature mice, comparing them with those from busulfan-treated adult mice, with validation through histological examination. The analysis revealed a higher signal variability (30 %-40 % at the peaks), prompting scrutiny of individual Raman spectra as a means of spermatogenesis measurement. However, principal component analysis (PCA) demonstrated significant cluster separation between the ST of mature and immature mice. Similar investigations were performed to compare ST from normal mature mice and those from busulfan-treated (BS-treated) mature mice, revealing substantial separation along PC1 and PC2 for all comparison sets. Additionally, comparing testicular samples from mature and immature mice revealed distinct separation in PCA. The study concludes that the combined approach of PCA and Raman spectroscopy proves to be a noninvasive and potentially valuable method for identifying spermatogenesis in seminiferous tubules and testicular samples.


Busulfan , Principal Component Analysis , Seminiferous Tubules , Spectrum Analysis, Raman , Spermatogenesis , Testis , Animals , Spectrum Analysis, Raman/methods , Male , Spermatogenesis/drug effects , Spermatogenesis/physiology , Seminiferous Tubules/drug effects , Testis/drug effects , Mice
13.
Ann Hematol ; 103(6): 2165-2168, 2024 Jun.
Article En | MEDLINE | ID: mdl-38584216

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy associated with a poor prognosis. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) has emerged as a potential treatment strategy for BPDCN, standardized conditioning regimens remain lacking. In this manuscript, we present two cases of BPDCN that were treated with a thiotepa-busulfan-fludarabine (TBF)-based conditioning regimen prior to allo-HSCT. Both cases demonstrated complete remission post-transplantation, sustained donor chimerism, and remission maintenance, suggesting the potential efficacy of the TBF conditioning regimen for BPDCN transplantation. Given the small sample size in our study, we emphasize caution and advocate for larger studies to confirm the efficacy of TBF in the treatment of BPDCN.


Busulfan , Dendritic Cells , Hematopoietic Stem Cell Transplantation , Thiotepa , Transplantation Conditioning , Vidarabine , Humans , Vidarabine/analogs & derivatives , Vidarabine/administration & dosage , Vidarabine/therapeutic use , Transplantation Conditioning/methods , Dendritic Cells/pathology , Thiotepa/administration & dosage , Thiotepa/therapeutic use , Male , Busulfan/administration & dosage , Busulfan/therapeutic use , Middle Aged , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Female , Transplantation, Homologous , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Allografts
14.
Stem Cell Res Ther ; 15(1): 125, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679715

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS: Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS: Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS: Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients.


Intestinal Mucosa , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Regeneration/drug effects , Organoids/metabolism , Coculture Techniques , Graft vs Host Disease/therapy , Mesenchymal Stem Cell Transplantation/methods , Busulfan/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects
15.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Article En | MEDLINE | ID: mdl-38661449

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Anemia, Sickle Cell , Fetal Hemoglobin , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Antigens, CD34 , Busulfan/therapeutic use , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Editing , Hematopoietic Stem Cells , Repressor Proteins , Transplantation Conditioning , Cell- and Tissue-Based Therapy/methods , Myeloablative Agonists/therapeutic use , Europe , North America
16.
Oncotarget ; 15: 220-231, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38484153

ABT199/venetoclax, an inhibitor of the pro-survival BCL-2 protein, has improved AML treatment. Its efficacy in hematopoietic stem cell transplantation (HSCT), when combined with other chemotherapeutic drugs, has not been thoroughly investigated. The present study demonstrates the synergistic cytotoxicity of ABT199/venetoclax with the DNA alkylator thiotepa (Thio) in AML cells. Cleavage of Caspase 3, PARP1 and HSP90, as well as increased Annexin V positivity, suggest potent activation of apoptosis by this two-drug combination; increased levels of γ-H2AX, P-CHK1 (S317), P-CHK2 (S19) and P-SMC1 (S957) indicate an enhanced DNA damage response. Likewise, the increased level of P-SAPK/JNK (T183/Y185) and decreased P-PI3Kp85 (Y458) suggest enhanced activation of stress signaling pathways. These molecular readouts were synergistically enhanced when ABT199/venetoclax and Thio were combined with fludarabine, cladribine and busulfan. The five-drug combination decreased the levels of BCL-2, BCL-xL and MCL-1, suggesting its potential clinical relevance in overcoming ABT199/venetoclax resistance. Moreover, this combination is active against P53-negative and FLT3-ITD-positive cell lines. Enhanced activation of apoptosis was observed in leukemia patient-derived cell samples exposed to the five-drug combination, suggesting a clinical relevance. The results provide a rationale for clinical trials using these two- and five-drug combinations as part of a conditioning regimen for AML patients undergoing HSCT.


Busulfan , Leukemia, Myeloid, Acute , Sulfonamides , Vidarabine/analogs & derivatives , Humans , Busulfan/pharmacology , Thiotepa/therapeutic use , Cladribine/pharmacology , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Drug Combinations , Cell Line, Tumor , Apoptosis
17.
J Toxicol Sci ; 49(4): 139-149, 2024.
Article En | MEDLINE | ID: mdl-38556351

Busulfan is an anticancer drug known to cause serious damage to seminiferous tubules in the testes and deplete germ cells in human and animal models. The testicular artery is anastomosed with deferential and cremasteric arteries and is divided into capsular arteries, which give rise to the centripetal arteries and then recurrent arteries. The arterial blood in the testicular tissue is supplied by such a consequent system of arterial vessels, in order from the peripheral to the central area. As anticancer drugs are generally distributed throughout the whole body via the bloodstream and the running and distribution of arteries differ among the testicular areas, we hypothesized that the efficacy of busulfan differs in different testicular areas, particularly between the central and peripheral areas. In this study, busulfan was intraperitoneally injected at 40 mg/kg body weight into C57BL/6J male mice. After 28 days, in busulfan-treated mice, the diameters of seminiferous tubules were significantly higher in the central than in the peripheral area of the testes. The seminiferous tubular areas also significantly decreased in the peripheral areas compared with the central areas. The number of germ cells per seminiferous tubule was significantly higher in the central than in the peripheral area. Sertoli cell nuclei were detached into the lumen in the peripheral area. The number of Leydig cells was significantly lower in the peripheral areas. These data suggest that the effects of busulfan differ between the central and peripheral areas of the testis at 4 weeks after busulfan administration.


Busulfan , Testis , Male , Animals , Humans , Mice , Busulfan/toxicity , Spermatogenesis , Mice, Inbred C57BL , Seminiferous Tubules
18.
Drug Des Devel Ther ; 18: 871-879, 2024.
Article En | MEDLINE | ID: mdl-38524879

Purpose: Pediatric patients receiving hematopoietic stem cell transplantation undergo regular administration of intravenous busulfan as a conditioning regimen. Once-daily regimen of busulfan has been proposed as a more convenient alternative to the traditional regimen, but it may increase the risk of toxicity such as veno-occlusive disease (VOD). The study aims to evaluate the pharmacokinetics (PKs) of once-daily regimens and investigate appropriate intravenous infusion times to reduce the risk of toxicity. Patients and methods: Once-daily busulfan dosing regimens for pediatric patient were reviewed and selected including EMA- and FDA-based once-daily dosing regimens. We generated busulfan PK data of virtual pediatric patients using a previously developed population PK model. PK profiles and proportion of patients achieving the referenced maximum concentration (Cmax) and exposure to busulfan were used to evaluate the appropriateness of both infusion time and dosing regimens. Results: Predicted PK profiles and exposure of busulfan showed relatively similar distributions for all once-daily dosing regimens. Most patients exceeded the referenced Cmax possibly associated with a high risk of VOD with all once-daily regimens when applied with 3 hours of infusion. Conclusion: While intravenous infusion of once-daily busulfan is typically administered over 3 hours, our findings emphasize the necessity of considering sufficient infusion times to ensure safe drug utilization and prevent toxicity, which will aid in optimal busulfan use in pediatric oncology.


Busulfan , Hematopoietic Stem Cell Transplantation , Child , Humans , Busulfan/pharmacokinetics , Busulfan/toxicity , Infusions, Intravenous , Transplantation, Homologous , Transplantation Conditioning
19.
Front Immunol ; 15: 1331322, 2024.
Article En | MEDLINE | ID: mdl-38487542

Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.


Neuroblastoma , Receptors, Antigen, T-Cell, gamma-delta , Humans , Mice , Animals , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Busulfan , Chemokines , Receptors, Chemokine
20.
J Pharmacokinet Pharmacodyn ; 51(3): 279-288, 2024 Jun.
Article En | MEDLINE | ID: mdl-38520573

Dose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they estimate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. Using busulfan as an example application and area under the concentration-time curve (AUC) as a target exposure metric, these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treatment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on real-world data (correlation coefficients of 0.945-0.998) as assessed by Bland-Altman plots, although agreement between NCA and MAP methods was higher during the first dosing interval (0.982-0.994) compared to subsequent dosing intervals (0.918-0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true simulated target attainment was lower for NCA (63-66%) versus MAP (91-93%). The largest differences in AUC estimation were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the methods considered time-dependent clearance and concentration-time points collected in earlier intervals. In conclusion, although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated exposure targets may require adjusting to maintain a consistent exposure.


Area Under Curve , Bayes Theorem , Busulfan , Models, Biological , Humans , Busulfan/pharmacokinetics , Busulfan/administration & dosage , Retrospective Studies , Male , Female , Middle Aged , Adult , Precision Medicine/methods , Dose-Response Relationship, Drug , Computer Simulation , Aged , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/administration & dosage , Young Adult
...