Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.522
1.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643172

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Induced Pluripotent Stem Cells , Humans , Animals , Mice , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Induced Pluripotent Stem Cells/metabolism , Chromatin/genetics , DNA-Binding Proteins/metabolism , Genome
2.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643244

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Chromatin , Crystallins , Animals , Mice , Humans , Mouse Embryonic Stem Cells/metabolism , Chromosomes/metabolism , Transcription Factors/metabolism , DNA/metabolism , Epithelium/metabolism , Crystallins/genetics , Crystallins/metabolism , CCCTC-Binding Factor/metabolism
3.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561749

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Drosophila Proteins , Drosophila , Animals , Humans , Animals, Genetically Modified/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Dimerization , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Mammals/genetics
4.
Nat Commun ; 15(1): 2813, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561336

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.


Genome , Protein Processing, Post-Translational , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin
5.
EMBO J ; 43(9): 1770-1798, 2024 May.
Article En | MEDLINE | ID: mdl-38565950

The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.


Breast Neoplasms , CCCTC-Binding Factor , Chromatin , Protein Serine-Threonine Kinases , Humans , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chromatin/metabolism , Chromatin/genetics , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Hippo Signaling Pathway
6.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38452764

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Chromatin , Enhancer Elements, Genetic , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Oncogenes , DNA/chemistry
7.
Nat Struct Mol Biol ; 31(3): 404-412, 2024 Mar.
Article En | MEDLINE | ID: mdl-38499830

Cytosine DNA methylation is a highly conserved epigenetic mark in eukaryotes. Although the role of DNA methylation at gene promoters and repetitive elements has been extensively studied, the function of DNA methylation in other genomic contexts remains less clear. In the nucleus of mammalian cells, the genome is spatially organized at different levels, and strongly influences myriad genomic processes. There are a number of factors that regulate the three-dimensional (3D) organization of the genome, with the CTCF insulator protein being among the most well-characterized. Pertinently, CTCF binding has been reported as being DNA methylation-sensitive in certain contexts, perhaps most notably in the process of genomic imprinting. Therefore, it stands to reason that DNA methylation may play a broader role in the regulation of chromatin architecture. Here we summarize the current understanding that is relevant to both the mammalian DNA methylation and chromatin architecture fields and attempt to assess the extent to which DNA methylation impacts the folding of the genome. The focus is in early embryonic development and cellular transitions when the epigenome is in flux, but we also describe insights from pathological contexts, such as cancer, in which the epigenome and 3D genome organization are misregulated.


DNA Methylation , Repressor Proteins , Animals , Repressor Proteins/metabolism , CCCTC-Binding Factor/metabolism , Genomic Imprinting , Chromatin , Mammals/genetics
8.
Nucleic Acids Res ; 52(7): 3837-3855, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38452213

CCCTC-binding factor (CTCF) binding sites are hotspots of genome instability. Although many factors have been associated with CTCF binding site fragility, no study has integrated all fragility-related factors to understand the mechanism(s) of how they work together. Using an unbiased, genome-wide approach, we found that DNA double-strand breaks (DSBs) are enriched at strong, but not weak, CTCF binding sites in five human cell types. Energetically favorable alternative DNA secondary structures underlie strong CTCF binding sites. These structures coincided with the location of topoisomerase II (TOP2) cleavage complex, suggesting that DNA secondary structure acts as a recognition sequence for TOP2 binding and cleavage at CTCF binding sites. Furthermore, CTCF knockdown significantly increased DSBs at strong CTCF binding sites and at CTCF sites that are located at topologically associated domain (TAD) boundaries. TAD boundary-associated CTCF sites that lost CTCF upon knockdown displayed increased DSBs when compared to the gained sites, and those lost sites are overrepresented with G-quadruplexes, suggesting that the structures act as boundary insulators in the absence of CTCF, and contribute to increased DSBs. These results model how alternative DNA secondary structures facilitate recruitment of TOP2 to CTCF binding sites, providing mechanistic insight into DNA fragility at CTCF binding sites.


CCCTC-Binding Factor , DNA Breaks, Double-Stranded , DNA Topoisomerases, Type II , DNA , Nucleic Acid Conformation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/chemistry , Humans , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Binding Sites , DNA/metabolism , DNA/chemistry , DNA/genetics , Protein Binding , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , Cell Line
9.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Article En | MEDLINE | ID: mdl-38436544

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Genital Neoplasms, Female , Ovarian Neoplasms , Ribosomal Proteins , Female , Humans , Apoptosis/genetics , Cell Proliferation/genetics , Ovarian Neoplasms/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , CCCTC-Binding Factor/genetics
10.
Nucleic Acids Res ; 52(7): 3654-3666, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38300758

DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.


Chromatin , CpG Islands , DNA Methylation , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Animals , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Chromatin/metabolism , Chromatin/genetics , CpG Islands/genetics , Mouse Embryonic Stem Cells/metabolism , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Epigenesis, Genetic , Promoter Regions, Genetic , Chromosomes/genetics
11.
Genes (Basel) ; 15(2)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38397134

Characterization of gene regulatory mechanisms in cancer is a key task in cancer genomics. CCCTC-binding factor (CTCF), a DNA binding protein, exhibits specific binding patterns in the genome of cancer cells and has a non-canonical function to facilitate oncogenic transcription programs by cooperating with transcription factors bound at flanking distal regions. Identification of DNA sequence features from a broad genomic region that distinguish cancer-specific CTCF binding sites from regular CTCF binding sites can help find oncogenic transcription factors in a cancer type. However, the presence of long DNA sequences without localization information makes it difficult to perform conventional motif analysis. Here, we present DNAResDualNet (DARDN), a computational method that utilizes convolutional neural networks (CNNs) for predicting cancer-specific CTCF binding sites from long DNA sequences and employs DeepLIFT, a method for interpretability of deep learning models that explains the model's output in terms of the contributions of its input features. The method is used for identifying DNA sequence features associated with cancer-specific CTCF binding. Evaluation on DNA sequences associated with CTCF binding sites in T-cell acute lymphoblastic leukemia (T-ALL) and other cancer types demonstrates DARDN's ability in classifying DNA sequences surrounding cancer-specific CTCF binding from control constitutive CTCF binding and identifying sequence motifs for transcription factors potentially active in each specific cancer type. We identify potential oncogenic transcription factors in T-ALL, acute myeloid leukemia (AML), breast cancer (BRCA), colorectal cancer (CRC), lung adenocarcinoma (LUAD), and prostate cancer (PRAD). Our work demonstrates the power of advanced machine learning and feature discovery approach in finding biologically meaningful information from complex high-throughput sequencing data.


Deep Learning , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , DNA/genetics , Transcription Factors/metabolism
12.
J Gen Virol ; 105(1)2024 01.
Article En | MEDLINE | ID: mdl-38175123

Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.


Chromatin , Hepatitis B virus , Chromatin/genetics , Hepatitis B virus/genetics , DNA, Circular/genetics , Nucleosomes , CCCTC-Binding Factor/genetics
13.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38244545

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Matrix Attachment Region Binding Proteins , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Neurons/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Chromatin/metabolism , Genome , Cognition , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism
14.
Cell Rep ; 43(1): 113663, 2024 01 23.
Article En | MEDLINE | ID: mdl-38206813

The transcription factor ZNF143 contains a central domain of seven zinc fingers in a tandem array and is involved in 3D genome construction. However, the mechanism by which ZNF143 functions in chromatin looping remains unclear. Here, we show that ZNF143 directionally recognizes a diverse range of genomic sites directly within enhancers and promoters and is required for chromatin looping between these sites. In addition, ZNF143 is located between CTCF and cohesin at numerous CTCF sites, and ZNF143 removal narrows the space between CTCF and cohesin. Moreover, genetic deletion of ZNF143, in conjunction with acute CTCF degradation, reveals that ZNF143 and CTCF collaborate to regulate higher-order topological chromatin organization. Finally, CTCF depletion enlarges direct ZNF143 chromatin looping. Thus, ZNF143 is recruited by CTCF to the CTCF sites to regulate CTCF/cohesin configuration and TAD (topologically associating domain) formation, whereas directional recognition of genomic DNA motifs directly by ZNF143 itself regulates promoter activity via chromatin looping.


Chromosomal Proteins, Non-Histone , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , CCCTC-Binding Factor/metabolism , Chromatin , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Binding Sites
15.
Genome Biol ; 25(1): 15, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38217027

The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.


Chromatin , Cohesins , CCCTC-Binding Factor/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
16.
Mol Biol Rep ; 51(1): 148, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236307

BACKGROUND: ESR1 is expressed by 60-70% of breast tumours. it's a good prognosis factor and the target of hormone therapy. Optimization of ESR1 reactivation therapy is currently ongoing. Here we probe if the transcription factor CTCF plays a role in the differential expression of ESR1 in the breast cancer cell lines MCF-7 (ESR1+) and MDA-MB-231 (ESR1-). METHODS AND RESULTS: Knockdown of CTCF in MCF-7 resulted in decreased ESR1 gene expression. CTCF binds to the promoter of ESR1 in MCF-7 but not in MDA-MB-231 cells. CTCF ESR1 binding sites are unmethylated in MCF7 but methylated in MDA-MB-231 cells. CONCLUSION: ESR1 expression in MCF7 cells is dependent on CTCF expression. CTCF can bind to specific regions of the promotor of ESR1 gene in MCF-7 cells but not in MDA-MB-231 cells, this correlates with the methylation status of these regions and could be involved in the transcriptional regulation of ESR1.


Breast Neoplasms , CCCTC-Binding Factor , DNA Methylation , Estrogen Receptor alpha , Humans , DNA , DNA Methylation/genetics , MCF-7 Cells , MDA-MB-231 Cells , Breast Neoplasms/genetics , Promoter Regions, Genetic , CCCTC-Binding Factor/genetics , Estrogen Receptor alpha/genetics
17.
Genome Biol ; 25(1): 40, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38297316

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


DNA-Binding Proteins , Transcription Factors , Male , Humans , DNA-Binding Proteins/metabolism , CCCTC-Binding Factor/metabolism , Transcription Factors/metabolism , Histones/metabolism , Chromatin , Binding Sites
18.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38279279

The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.


Cohesins , Developmental Disabilities , Humans , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cohesins/genetics , De Lange Syndrome/genetics , DNA , Mutation , Mutation, Missense , Developmental Disabilities/genetics
19.
J Biol Chem ; 300(1): 105538, 2024 Jan.
Article En | MEDLINE | ID: mdl-38072046

Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.


CCCTC-Binding Factor , Chromatin , DNA-Binding Proteins , Gene Expression Regulation , High Mobility Group Proteins , Histone Chaperones , Animals , Mice , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , DNA Replication , Histone Chaperones/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , NIH 3T3 Cells , DNA Repair
20.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37326830

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Aminosalicylic Acids , Arthritis, Rheumatoid , Galactosides , Transcription Factors , Animals , Mice , Humans , CCCTC-Binding Factor , Anti-Citrullinated Protein Antibodies , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Knockout , Sialyltransferases/genetics
...