Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 586
1.
Virus Res ; 345: 199382, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697295

Natural killer cells (NK cells) are the front line of immune cells to combat pathogens and able to influence the subsequent adaptive immune responses. One of the factors contributing to pathogenesis in dengue hemorrhagic fever (DHF) disease is aberrant immune activation during early phase of infection. This study explored the profile of NK cells in dengue infected pediatric patients with different degrees of disease severity. DHF patients contained higher frequency of activated NK cells but lower ratio of CD56dim:CD56bright NK subsets. Activated NK cells exhibited alterations in several NK receptors. Interestingly, the frequencies of NKp30 expressing activated NK cells were more pronounced in dengue fever (DF) than in DHF pediatric patients. In vitro functional analysis indicated that degranulation of NK cells in responding to dengue infected dendritic cells (DCs) required cell-cell contact and type I IFNs. Meanwhile, Interferon gamma (IFN-γ) production initially required cell-cell contact and type I IFNs followed by Interleukin-12 (IL-12), Interleukin-15 (IL-15) and Interleukin-18 (IL-18) resulting in the amplification of IFN-γ producing NK cells over time. This study highlighted the complexity and the factors influencing NK cells responses to dengue virus. Degree of activation, phenotypes of activated cells and the crosstalk between NK cells and other immune cells, could modulate the outcome of NK cells function in the dengue disease.


Dendritic Cells , Dengue Virus , Interferon-gamma , Interleukin-12 , Killer Cells, Natural , Phenotype , Killer Cells, Natural/immunology , Humans , Child , Interleukin-12/immunology , Male , Female , Dendritic Cells/immunology , Dengue Virus/immunology , Interferon-gamma/immunology , Interleukin-15/immunology , Lymphocyte Activation , Interleukin-18/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Child, Preschool , Dengue/immunology , Dengue/virology , Severe Dengue/immunology , Severe Dengue/virology , Adolescent , CD56 Antigen/immunology , Interferon Type I/immunology
2.
Antiviral Res ; 205: 105385, 2022 09.
Article En | MEDLINE | ID: mdl-35917968

Natural killer (NK) cells play a crucial role in the control of human viral infections but their activity is significantly impaired in patients infected with chronic hepatitis B (CHB). The mechanism that contributes to NK cell dysfunction in CHB needs further elucidation. In this study, we analyzed the expression and function of the novel inhibitory receptor immunoglobulin-like transcript-2 (ILT2) on NK cells from 131 CHB patients and 36 healthy controls. We observed that ILT2 expression on circulating CD56dimCD16+NK cells was increased in immune-tolerant, immune-active and HBeAg-negative hepatitis patients compared with inactive carriers and controls. The frequency of ILT2+CD56dimNK cells was positively correlated with serum viral load in immune-tolerant patients. The percentage of ILT2+CD56dimNK cells decreased along with HBV load in CHB patients who received antiviral therapy. Functional analysis showed that ILT2+CD56dimNK cells in CHB patients had significantly reduced degranulation and IFN-γ production. Upregulation of ILT2 was associated with high levels of apoptosis in CD56dimCD16+NK cells from CHB patients. ILT2 blockade was shown to increase the cytotoxicity and IFN-γ production of CD56dimNK cells in some CHB patients. Finally, ILT2 was found to be moderately upregulated by TGF-ß1, which was increased in immune-tolerant, immune-active and HBeAg-negative hepatitis patients. Our results show that chronic HBV infection increases the levels of the inhibitory receptor ILT2 on CD56dimNK cells and inhibits their functions, providing a new mechanism of NK-cell disability in CHB patients.


Antigens, CD/immunology , Hepatitis B, Chronic , Leukocyte Immunoglobulin-like Receptor B1/immunology , CD56 Antigen/immunology , GPI-Linked Proteins/immunology , Hepatitis B e Antigens , Hepatitis B virus , Humans , Interferon-gamma/metabolism , Killer Cells, Natural , Receptors, IgG/immunology
3.
Eur J Immunol ; 52(9): 1441-1451, 2022 09.
Article En | MEDLINE | ID: mdl-35775327

Natural Killer (NK) cells are important innate lymphocytes for effective immune responses against intracellular pathogens and tumors. CD56 is a well-known marker for human NK cells, but there is very limited information about a functional role of this surface receptor. Here, we show that engagement of CD56 can induce NK cell activation resulting in degranulation, IFN-γ secretion and morphological changes, making CD56 a potential co-activating receptor in NK cells. Interestingly, this effect was only observed in cytokine pre-activated and not in freshly isolated human NK cells, demonstrating that NK cell reactivity upon CD56 engagement was dependent on cytokine stimulation. Inhibition of Syk, PI3K, Erk, and src-family-kinases impaired CD56-mediated NK cell stimulation. Finally, we used CRISPR/Cas9 to delete CD56 from primary human NK cells. While this abolished the stimulatory effect of CD56 on pre-activated NK cells, the cytotoxic activity of NK cells against several tumor target cells was not affected by the absence of CD56. This demonstrates that the stimulating effect of CD56 on pre-activated NK cells does not have a major impact on their cytotoxic activity, but it may contribute to the function of CD56 as a fungal recognition receptor and in the NK cell developmental synapse.


CD56 Antigen , Cytokines , Killer Cells, Natural , CD56 Antigen/immunology , Cytokines/immunology , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation
4.
Front Immunol ; 13: 807539, 2022.
Article En | MEDLINE | ID: mdl-35185893

Surgical excision is currently the principal therapy for locoregional colorectal cancer (CRC). However, surgical trauma leads to controlled tissue damage, causing profound alterations in host immunity and, in turn, affecting post-operative outcomes. Surgery-induced immune alterations in CRC remain poorly defined. Here, single-cell mass cytometry was applied to serial blood samples collected pre-operatively, and on days 1, 3, and 7 post-operatively from 24 patients who underwent laparoscopic surgical resection of CRC to comprehensively monitor the perioperative phenotypic alterations in immune cells and dynamics of immune response. Characterization of immune cell subsets revealed that the post-operative immune response is broad but predominantly suppressive, supported by the decreases in total frequencies of circulating T cells and natural killer (NK) cells, as well as decreased HLA-DR expression on circulating monocytes. The proportion of T cells significantly decreased on day 1 and recovered to the pre-surgical level on day 3 after surgery. The frequency of monocytes was significantly elevated on day 1 after surgery and declined to baseline level on day 3. NK cells temporarily contracted on post-operative day 3. T cells, monocytes, DCs, NK cells, and B cells were partitioned into phenotypically different single-cell clusters. The dynamics of single-cell clusters were different from those of the bulk lineages. T cell clusters in the same response phase fluctuate inconsistently during the perioperative period. Comparing to the baseline levels, the frequencies of CD11b(+)CD33(+)CD14(+)CD16(-) classical monocytes expanded followed by contraction, whereas CD11b(+)CD33(+)CD14(high)CD16(low) intermediate monocytes remained unchanged; HLA-DR expression in monocytes were significantly reduced; the frequencies of intermediate CD56(bright)CD16(+) NK cell subsets increased; and the percentage of memory B lymphocytes were elevated after surgery. Post-operative pro- and anti-inflammatory cytokines were both altered. Furthermore, perioperative immune perturbations in some of the cell subsets were unrecovered within seven days after surgery. Chronological monitoring major immune lineages provided an overview of surgery-caused alterations, including cell augments and contractions and precisely timed changes in immune cell distribution in both innate and adaptive compartments, providing evidence for the interaction between tumor resection and immune modulation.


B-Lymphocytes/immunology , Colorectal Neoplasms/immunology , HLA-DR Antigens/metabolism , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Adolescent , Adult , Aged , Aged, 80 and over , B-Lymphocytes/metabolism , CD56 Antigen/immunology , CD56 Antigen/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/surgery , Female , Flow Cytometry , Humans , Immunophenotyping , Killer Cells, Natural/metabolism , Laparoscopy , Male , Middle Aged , Natural Killer T-Cells/metabolism , Postoperative Period , Receptors, IgG/immunology , Receptors, IgG/metabolism , Single-Cell Analysis , Young Adult
5.
Clin Immunol ; 236: 108956, 2022 03.
Article En | MEDLINE | ID: mdl-35176483

Immunoparalysis and apoptosis of T cells are serious problems for the evolution of septic patients. We aimed to relate changes in the number of αß and γδ T cells during hospital stay to the poor evolution of sepsis. In this prospective study, we recruited a total of 92 septic patients from the Emergency and Intensive Care Departments of two Hospitals, according to the latest criteria for the definition and management of sepsis. According to the severity of the septic process, there was a progressive decrease in T cells, being much more intense in γδ T cells. This decrease recovered in surviving patients, but CD3+CD56+ γδ T cells continued to decreased during hospital stay in non-surviving patients. Apoptosis increased in sepsis. Cell death of CD3+CD56+ γδ T cells progressively increased according to the severity of sepsis, especially in non-surviving patients.


Sepsis , Shock, Septic , Apoptosis , CD3 Complex/immunology , CD56 Antigen/immunology , Hospitals , Humans , Lymphocyte Count , Prospective Studies , Receptors, Antigen, T-Cell, gamma-delta/metabolism
6.
Int J Immunopathol Pharmacol ; 36: 20587384211051982, 2022.
Article En | MEDLINE | ID: mdl-35021918

OBJECTIVES: To investigate the distinctive features of lymphocytes promoting inflammation in ulcerative colitis. METHODS: We performed flow cytometric analysis of peripheral blood mononuclear cells (PBMCs) and colorectal mucosa lymphocytes in ulcerative colitis patients (n = 13) and control patients (n = 5). RESULTS: CD62L+/CD3+CD4+ (35.7 ± 14.0% vs. 19.9 ± 6.4%) and CD62L+/CD3+CD4- cells (17.1 ± 17.4% vs. 2.4 ± 3.9%) were higher in the rectum of ulcerative colitis patients than in control patients. Subpopulation analysis revealed that CD45RA-CD62L+/CD3+CD4+, that is, central memory T cell fraction in CD4+ T cells, was significantly increased in the rectum of ulcerative colitis, compared to that in control patients (23.3 ± 10.5% vs. 8.2 ± 4.0%). Comparison of rectum and colon samples in ulcerative colitis patients indicated that CD56+/CD3+ was decreased in the rectum compared to that in the colon (11.3 ± 12.5% vs. 21.3 ± 16.5%). The ratio of CD56+/CD3+ was also decreased in the rectum of active ulcerative colitis patients compared to that in ulcerative colitis patients at the endoscopic remission stages (2.8 ± 1.7% vs. 18.5 ± 13.3%). CONCLUSION: We demonstrated that CD62L+ T lymphocytes, particularly the CD45RA-CD62L+ T cell subset that represents central memory T cells, were increased in the rectum of patients with ulcerative colitis. In addition, the CD56+/CD3+ subset (natural killer T cells) was decreased in the rectum compared to that of less inflamed colonic mucosa. These results suggest that the enrichment of central memory T lymphocytes and the reduction of natural killer T cells in the gut mucosa are involved in the pathogenesis of ulcerative colitis.


Colitis, Ulcerative/immunology , Memory T Cells/immunology , Natural Killer T-Cells/immunology , Rectum/immunology , Adult , Aged , CD3 Complex/immunology , CD56 Antigen/immunology , Dipeptidyl Peptidase 4/immunology , Female , Humans , Leukocyte Common Antigens/immunology , Male , Middle Aged , Young Adult
7.
PLoS Pathog ; 17(11): e1010034, 2021 11.
Article En | MEDLINE | ID: mdl-34762717

Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.


Antigens, CD/metabolism , CD56 Antigen/immunology , HIV Infections/pathology , HIV/physiology , Killer Cells, Natural/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Viral Load , Viremia/pathology , Antigens, CD/genetics , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , Humans , Killer Cells, Natural/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Viremia/immunology , Viremia/metabolism , Viremia/virology
8.
Biomedica ; 41(Sp. 2): 86-102, 2021 10 15.
Article En, Es | MEDLINE | ID: mdl-34669281

INTRODUCTION: Immunological markers have been described during COVID-19 and persist after recovery. These immune markers are associated with clinical features among SARSCoV-2 infected individuals. Nevertheless, studies reporting a comprehensive analysis of the immune changes occurring during SARS-CoV-2 infection are still limited. OBJECTIVE: To evaluate the production of proinflammatory cytokines, the antibody response, and the phenotype and function of NK cells and T cells in a Colombian family cluster with SARS-CoV-2 infection. MATERIALS AND METHODS: Proinflammatory cytokines were evaluated by RT-PCR and ELISA. The frequency, phenotype, and function of NK cells (cocultures with K562 cells) and T-cells (stimulated with spike/RdRp peptides) were assessed by flow cytometry. Anti-SARS-CoV-2 antibodies were determined using indirect immunofluorescence and plaque reduction neutralization assay. RESULTS: During COVID-19, we observed a high proinflammatory-cytokine production and a reduced CD56bright-NK cell and cytotoxic response. Compared with healthy controls, infected individuals had a higher frequency of dysfunctional CD8+ T cells CD38+HLA-DR-. During the acute phase, CD8+ T cells stimulated with viral peptides exhibited a monofunctional response characterized by high IL-10 production. However, during recovery, we observed a bifunctional response characterized by the co-expression of CD107a and granzyme B or perforin. CONCLUSION: Although the proinflammatory response is a hallmark of SARS-CoV-2 infection, other phenotypic and functional alterations in NK cells and CD8+ T cells could be associated with the outcome of COVID-19. However, additional studies are required to understand these alterations and to guide future immunotherapy strategies.


Introducción. Se han descrito diferentes marcadores inmunológicos durante la COVID-19, los cuales persisten incluso después de la convalecencia y se asocian con los estadios clínicos de la infección. Sin embargo, aún son pocos los estudios orientados al análisis exhaustivo de las alteraciones del sistema inmunológico en el curso de la infección. Objetivo. Evaluar la producción de citocinas proinflamatorias, la reacción de anticuerpos, y el fenotipo y la función de las células NK y los linfocitos T en una familia colombiana con infección por SARS-CoV-2. Materiales y métodos. Se evaluaron las citocinas proinflamatorias mediante RT-PCR y ELISA; la frecuencia, el fenotipo y la función de las células NK (en cocultivos con células K562) y linfocitos T CD8+ (estimulados con péptidos spike/RdRp) mediante citometría de flujo, y los anticuerpos anti-SARS-CoV-2, mediante inmunofluorescencia indirecta y prueba de neutralización por reducción de placa. Resultados. Durante la COVID-19 hubo una producción elevada de citocinas proinflamatorias, con disminución de las células NK CD56bright y reacción citotóxica. Comparados con los controles sanos, los individuos infectados presentaron con gran frecuencia linfocitos T CD8+ disfuncionales CD38+HLA-DR-. Además, en los linfocitos T CD8+ estimulados con péptidos virales, predominó una reacción monofuncional con gran producción de IL-10 durante la fase aguda y una reacción bifuncional caracterizada por la coexpresión de CD107a y granzima B o perforina durante la convalecencia. Conclusión. Aunque la reacción inflamatoria caracteriza la infección por SARS-CoV-2, hay otras alteraciones fenotípicas y funcionales en células NK y linfocitos T CD8+ que podrían asociarse con la progresión de la infección. Se requieren estudios adicionales para entender estas alteraciones y guiar futuras estrategias de inmunoterapia.


COVID-19/immunology , Killer Cells, Natural , SARS-CoV-2/immunology , T-Lymphocytes , Adult , Antibodies, Viral/analysis , CD56 Antigen/immunology , Case-Control Studies , Colombia , Family Health , Granzymes/metabolism , Humans , Interleukin-10/metabolism , Interleukin-1beta/blood , Interleukin-6/blood , Interleukin-8/blood , K562 Cells , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphocyte Activation , Male , Middle Aged , Perforin/metabolism , Phenotype , Receptors, CCR7/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/blood , Young Adult
9.
Br J Haematol ; 195(5): 710-721, 2021 12.
Article En | MEDLINE | ID: mdl-34490616

Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.


CD56 Antigen/analysis , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute/therapy , Receptors, IgG/analysis , Adolescent , Adult , Brazil/epidemiology , CD56 Antigen/immunology , Child , Female , GPI-Linked Proteins/analysis , GPI-Linked Proteins/immunology , Graft vs Host Disease/etiology , Humans , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/immunology , Male , Middle Aged , Proof of Concept Study , Receptors, IgG/immunology , Young Adult
11.
Cells ; 10(7)2021 07 06.
Article En | MEDLINE | ID: mdl-34359872

Ovarian cancer is the most lethal gynecological malignancy, with serous histotype as the most prevalent epithelial ovarian cancer (EOC). Peritoneal ascites is a frequent comorbidity in advanced EOC. EOC-associated ascites provide a reliable sampling source for studying lymphocytes directly from tumor environment. Herein, we carried out flow cytometry-based analysis to readdress issues on NK and T lymphocyte subsets in women with advanced EOC, additionally evaluating phenotypic modulation of their intracellular pathways involved in interleukin (IL)-2 and IL-15 signaling. Results depicted ascites as an inflammatory and immunosuppressive environment, presenting significantly (p < 0.0001) higher amounts of IL-6 and IL-10 than in the patients' blood, as well as significantly (p < 0.05) increased expression of checkpoint inhibitory receptors (programmed death protein-1, PD-1) and ectonucleotidase (CD39) on T lymphocytes. However, NK lymphocytes from EOC-associated ascites showed higher (p < 0.05) pS6 phosphorylation compared with NK from blood. Additionally, in vitro treatment of lymphocytes with IL-2 or IL-15 elicited significantly (p < 0.001) phosphorylation of the STAT5 protein in NK, CD3 and CD8 lymphocytes, both from blood and ascites. EOC-associated ascites had a significantly (p < 0.0001) higher proportion of NK CD56bright lymphocytes than blood, which, in addition, were more responsive (p < 0.05) to stimulation by IL-2 than CD56dim NK. EOC-associated ascites allow studies on lymphocyte phenotype modulation in the tumor environment, where inflammatory profile contrasts with the presence of immunosuppressive elements and development of cellular self-regulating mechanisms.


Ascites/immunology , CD56 Antigen/immunology , Cystadenocarcinoma, Serous/immunology , Killer Cells, Natural/immunology , Ovarian Neoplasms/immunology , Adult , Aged , Aged, 80 and over , Apyrase/genetics , Apyrase/immunology , Ascites/genetics , Ascites/pathology , CD56 Antigen/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-6/genetics , Interleukin-6/immunology , K562 Cells , Killer Cells, Natural/pathology , Middle Aged , Neoplasm Grading , Neoplasm Staging , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
12.
Front Immunol ; 12: 690940, 2021.
Article En | MEDLINE | ID: mdl-34267757

Background: In children undergoing chemotherapy yearly influenza vaccination is recommended by treatment protocols. We investigated the relationship between cellular immunity and the antibody response to inactivated influenza vaccines. Methods: 25 patients (age: 2-18 years) undergoing chemotherapy for different malignancies participated in our study. Flow cytometric detection of peripheral blood lymphocyte subpopulations together with hemagglutination inhibition antibody titers were measured before and 21-28 days after vaccination. We examined the ratio and total numbers of CD3+, CD4+, CD8+ T cells, activated helper (CD3+CD4+CD25low), regulatory (CD3+CD4+CD25high), naive (CD3+CD45RA+) and memory (CD3+CD45RO+) T cells, CD56+NK, and CD3+CD56+ (NKT-like) cells. Relationships between specific antibody responses (seroprotection, seroconversion, geometric mean titer (GMT), geometric mean fold increase (GMFI)) and the ratios and counts of lymphocyte subpopulations were evaluated using one-way ANOVA and the paired sample t test after dichotomization according to age-related reference values. Results: Patients with CD4+ lymphocyte levels in the normal age-specific range showed significantly better response regarding postvaccination GMT elevation for H1N1 and H3N2 strains (97.52 vs. 19.2, p=0.019, 80 vs. 14.43, p=0.021, respectively). GMFI results were significant only against B strain (2.69-fold vs. 1.23-fold, p=0.046). Prevaccination CD3+CD56+ (NKT-like) cells above predicted values according to age showed significant associations both in postvaccination GMT elevation (H1N1: 75.11 vs. 14.14, p=0.010; H3N2: 62.18 vs. 11.22, p=0.012; B: 22.69 vs. 6.67, p=0.043) and GMFI against all three strains (H1N1: 3.76-fold vs. 1.06-fold, p=0.015; H3N2: 2.74-fold vs. 1, p=0.013; B: 2.57-fold vs. 1, p=0.008). By one-way ANOVA, we found a positive relation between absolute lymphocyte cell count above 1000/µl and the postvaccination GMT elevation against H3N2 (12.81 vs. 56.56, p=0.032), and GMFI regarding H1N1 (1.22-fold vs. 3.48-fold, p=0.044). Conclusions: In addition to verifying the predictive value of absolute lymphocyte count above 1000/µl, our results suggest an association between NKT-like cell counts and the specific antibody response against all three investigated influenza strains in highly immunosuppressed patients. Furthermore, prevaccination CD4+ lymphocyte levels in the normal age-specific range may influence seroresponse.


Influenza Vaccines/administration & dosage , Natural Killer T-Cells/immunology , Neoplasms/immunology , Vaccines, Inactivated/administration & dosage , Adolescent , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/immunology , CD56 Antigen/immunology , Child , Child, Preschool , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/prevention & control , Lymphocyte Count , Male , Neoplasms/blood , Neoplasms/drug therapy , Vaccination
13.
Blood ; 138(16): 1465-1480, 2021 10 21.
Article En | MEDLINE | ID: mdl-34077953

B- and T-cell acute lymphoblastic leukemia (B/T-ALL) may be refractory or recur after therapy by suppressing host anticancer immune surveillance mediated specifically by natural killer (NK) cells. We delineated the phenotypic and functional defects in NK cells from high-risk patients with B/T-ALL using mass cytometry, flow cytometry, and in silico cytometry, with the goal of further elucidating the role of NK cells in sustaining acute lymphoblastic leukemia (ALL) regression. We found that, compared with their normal counterparts, NK cells from patients with B/T-ALL are less cytotoxic but exhibit an activated signature that is characterized by high CD56, high CD69, production of activated NK cell-origin cytokines, and calcium (Ca2+) signaling. We demonstrated that defective maturation of NK cells into cytotoxic effectors prevents NK cells from ALL from lysing NK cell-sensitive targets as efficiently as do normal NK cells. Additionally, we showed that NK cells in ALL are exhausted, which is likely caused by their chronic activation. We found that increased frequencies of activated cytokine-producing NK cells are associated with increased disease severity and independently predict poor clinical outcome in patients with ALL. Our studies highlight the benefits of developing NK cell profiling as a diagnostic tool to predict clinical outcome in patients with ALL and underscore the clinical potential of allogeneic NK cell infusions to prevent ALL recurrence.


Killer Cells, Natural/immunology , Lymphocyte Activation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , CD56 Antigen/immunology , Cells, Cultured , Cytokines/immunology , Cytotoxicity, Immunologic , Humans , Lectins, C-Type/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Prognosis
14.
Front Immunol ; 12: 640672, 2021.
Article En | MEDLINE | ID: mdl-34017328

The differentiation of human induced pluripotent stem cells (hiPSCs) into T and natural killer (NK) lymphocytes opens novel possibilities for developmental studies of immune cells and in-vitro generation of cell therapy products. In particular, iPSC-derived NK cells gained interest in adoptive anti-cancer immunotherapies, since they enable generation of homogenous populations of NK cells with and without genetic engineering that can be grown at clinical scale. However, the phenotype of in-vitro generated NK cells is not well characterized. NK cells derive in the bone marrow and mature in secondary lymphoid tissues through distinct stages from CD56brightCD16- to CD56dimCD16+ NK cells that represents the most abandoned population in peripheral blood. In this study, we efficiently generated CD56+CD16+CD3- NK lymphocytes from hiPSC and characterized NK-cell development by surface expression of NK-lineage markers. Hematopoietic priming of hiPSC resulted in 31.9% to 57.4% CD34+CD45+ hematopoietic progenitor cells (HPC) that did not require enrichment for NK lymphocyte propagation. HPC were further differentiated into NK cells on OP9-DL1 feeder cells resulting in high purity of CD56brightCD16- and CD56brightCD16+ NK cells. The output of generated NK cells increased up to 40% when OP9-DL1 feeder cells were inactivated with mitomycine C. CD7 expression could be detected from the first week of differentiation indicating priming towards the lymphoid lineage. CD56brightCD16-/+ NK cells expressed high levels of DNAM-1, CD69, natural killer cell receptors NKG2A and NKG2D, and natural cytotoxicity receptors NKp46, NKp44, NKp30. Expression of NKp80 on 40% of NK cells, and a perforin+ and granzyme B+ phenotype confirmed differentiation up to stage 4b. Killer cell immunoglobulin-like receptor KIR2DL2/DL3 and KIR3DL1 were found on up to 3 and 10% of mature NK cells, respectively. NK cells were functional in terms of cytotoxicity, degranulation and antibody-dependent cell-mediated cytotoxicity.


Cell Differentiation/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/metabolism , CD56 Antigen/immunology , Cell Culture Techniques/methods , Cell Degranulation/immunology , GPI-Linked Proteins/immunology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Killer Cells, Natural/cytology , Lymphocyte Activation/immunology , Lymphocyte Subsets/cytology , Receptors, IgG/immunology , Receptors, KIR2DL2/immunology , Receptors, KIR2DL3/immunology , Receptors, KIR3DL1/immunology
15.
J Allergy Clin Immunol ; 148(4): 1081-1087.e2, 2021 10.
Article En | MEDLINE | ID: mdl-34019913

BACKGROUND: CD56-expressing natural killer (NK) cells as well as invariant NK T (iNKT) cells have been shown to either promote or inhibit allergic immune responses. OBJECTIVE: The aim of the present study was to investigate the impact of these cells in a recently developed humanized mouse model of allergen-induced IgE-dependent gut and lung inflammation. METHODS: Nonobese diabetic-severe combined immunodeficiency γ-chain knockout mice were injected intraperitoneally with human PBMCs or CD56-depleted (CD56neg) PBMCs from highly sensitized donors with birch or grass pollen allergy together with the respective allergen or with NaCl as a control. Three weeks later, the mice were challenged with the allergen rectally and gut inflammation was monitored by video miniendoscopy and by histology. Furthermore, airway inflammation was measured after an additional intranasal allergen challenge. RESULTS: Allergen-specific human IgE in mouse sera, detectable only after coinjection of the respective allergen, was reduced in mice being injected with CD56neg PBMCs compared with in mice receiving nondepleted PBMCs. Consequently, allergen-induced IgE-dependent colitis, airway hyperreactivity, and mucus-producing goblet cells were significantly inhibited in these mice. Interestingly, reconstitution of CD56neg PBMCs with nondepleted CD56+ cells and with CD56+CD3+ iNKT cells restored gut as well as lung inflammation, whereas addition of CD3-depleted CD56+ cells did not. CONCLUSION: These results demonstrate that allergen-specific gut and lung inflammation in PBMC-engrafted humanized mice is promoted by CD56+CD3+ iNKT cells, which opens new possibilities of therapeutic intervention in allergic diseases.


Colitis/immunology , Natural Killer T-Cells/immunology , Respiratory Hypersensitivity/immunology , Rhinitis, Allergic, Seasonal/immunology , Allergens/immunology , Animals , Betula/immunology , CD3 Complex/immunology , CD56 Antigen/immunology , Colitis/pathology , Colitis/physiopathology , Colon/immunology , Colon/pathology , Female , Humans , Immunoglobulin E/blood , Lung/immunology , Lung/pathology , Lung/physiopathology , Male , Mice, Transgenic , Poaceae/immunology , Pollen/immunology , Respiratory Hypersensitivity/pathology , Respiratory Hypersensitivity/physiopathology , Rhinitis, Allergic, Seasonal/pathology , Rhinitis, Allergic, Seasonal/physiopathology
16.
Front Immunol ; 12: 798087, 2021.
Article En | MEDLINE | ID: mdl-35058934

The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33- subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33- NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33- NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.


Antibody-Dependent Cell Cytotoxicity/immunology , Cytokines/immunology , Killer Cells, Natural/immunology , Sialic Acid Binding Ig-like Lectin 3/immunology , CD56 Antigen/immunology , CD56 Antigen/metabolism , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/immunology , Flow Cytometry/methods , Gene Expression Profiling/methods , Humans , K562 Cells , Killer Cells, Natural/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, IgG/metabolism , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/metabolism , Up-Regulation
17.
Front Immunol ; 12: 772332, 2021.
Article En | MEDLINE | ID: mdl-35095846

The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.


Killer Cells, Natural/immunology , Macaca mulatta/immunology , Animals , CD56 Antigen/immunology , Kinetics , Lymph Nodes/immunology , Staining and Labeling
18.
Cancer Sci ; 112(2): 523-536, 2021 Feb.
Article En | MEDLINE | ID: mdl-33064914

Dasatinib treatment markedly increases the number of large granular lymphocytes including natural killer (NK) cells in a proportion of Ph+ leukemia patients, which associates with a better prognosis. In-depth immune profiling of NK cells can predict therapeutic response in these patients. In the present study, we showed that CD56-negative (CD56neg ) NK cells increased exclusively in cytomegalovirus-seropositive (CMV+ ) patients treated with dasatinib. The increase longitudinally paralleled with progressive differentiation of CD56dim NK cells during dasatinib therapy driven by CMV reactivation as shown by principal component analysis on 19 NK cell markers. The CD56neg NK cells showed downregulation of NK-activating receptors, upregulation of PD-1, and lower cytotoxicity and cytokine production, indicating that these cells are anergic and dysfunctional as seen in chronic infections with HIV-1 or hepatitis C virus. Moreover, cytolytic activity of CD56dim and CD56neg NK cells against leukemia cells was partially restored by nivolumab in proportion to the frequency of PD-1+ NK cells. The proportion of patients who achieved deep molecular responses at 2 years was significantly higher in dasatinib-treated patients with ≥3% CD56neg NK cells than in those with fewer CD56neg NK cells (54.5% vs 15.8%, P = .0419). These findings suggest that CD56neg NK cells may be an exhausted population induced by chronic activation through CMV reactivation during dasatinib therapy. Expansion of CD56neg NK cells is a hallmark of chronic NK cell activation in patients treated with dasatinib and may predict a better clinical outcome. Furthermore, PD-1 blockade may enhance anti-leukemia responses of such NK cells.


Antineoplastic Agents/therapeutic use , Dasatinib/therapeutic use , Killer Cells, Natural/immunology , Leukemia/drug therapy , Leukemia/immunology , Lymphocyte Activation/drug effects , B7-H1 Antigen/immunology , CD56 Antigen/immunology , Cytomegalovirus Infections/complications , Humans , Killer Cells, Natural/drug effects , Lymphocyte Activation/immunology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Virus Activation/immunology
19.
J Am Acad Dermatol ; 84(3): 644-653, 2021 Mar.
Article En | MEDLINE | ID: mdl-32561372

BACKGROUND: Complications involving internal organs are usually present in Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). However, pancreatic complications are rarely reported and studied. OBJECTIVE: To summarize clinical characteristics of SJS/TEN-associated acute pancreatic injuries and to investigate underlying inflammatory mechanisms. METHODS: Clinical records of 124 inpatients with SJS/TEN were reviewed. Serum levels of tumor necrosis factor α, interleukin (IL) 6, IL-18, IL-15, IL-12p70, and soluble CD56 were determined in 18 healthy donors and 17 patients with SJS/TEN, including 3 with acute pancreatic injuries. RESULTS: Acute pancreatic injury was diagnosed in 7.3% of patients (9/124) in the SJS/TEN cohort. Elevation of serum transaminase level and hypoalbuminemia occurred more frequently in patients with acute pancreatic injuries compared with those without pancreatic symptoms (P = .004 and <.001, respectively). Although acute pancreatic injury did not alter mortality rate of SJS/TEN, it was associated with longer hospitalization stays (P = .008). Within the serum cytokines whose levels were elevated in SJS/TEN, only IL-18 was found to be selectively increased in patients with acute pancreatic injuries compared with those without them (P = .03). LIMITATIONS: Cohort was small. CONCLUSION: Acute pancreatic injury is a gastrointestinal complication of SJS/TEN in which hepatotoxicity is more likely to occur. Overexpression of IL-18 might be involved in this unique entity.


Interleukin-18/blood , Pancreatitis/immunology , Stevens-Johnson Syndrome/complications , Adolescent , Adult , Aged , CD56 Antigen/blood , CD56 Antigen/immunology , Child , Female , Humans , Interleukin-12/blood , Interleukin-12/immunology , Interleukin-15/blood , Interleukin-15/immunology , Interleukin-18/immunology , Interleukin-6/blood , Interleukin-6/immunology , Male , Middle Aged , Pancreatitis/blood , Retrospective Studies , Stevens-Johnson Syndrome/blood , Stevens-Johnson Syndrome/immunology , Stevens-Johnson Syndrome/mortality , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology , Young Adult
20.
Eur J Immunol ; 51(3): 672-681, 2021 03.
Article En | MEDLINE | ID: mdl-33231295

CD56+ T cells are a group of pro-inflammatory CD3+ lymphocytes with characteristics of natural killer cells, being involved in antimicrobial immune defense. Here, we performed deep phenotypic profiling of CD3+ CD56+ cells in peripheral blood of normal human donors and individuals sensitized to birch-pollen or/and house dust mite by high-dimensional mass cytometry combined with manual and computational data analysis. A co-regulation between major conventional T-cell subsets and their respective CD3+ CD56+ cell counterparts appeared restricted to CD8+ , MAIT, and TCRγδ+ T-cell compartments. Interestingly, we find a co-regulation of several CD3+ CD56+ cell subsets in allergic but not in healthy individuals. Moreover, using FlowSOM, we distinguished a variety of CD56+ T-cell phenotypes demonstrating a hitherto underestimated heterogeneity among these cells. The novel CD3+ CD56+ subset description comprises phenotypes superimposed with naive, memory, type 1, 2, and 17 differentiation stages, in part represented by a phenotypical continuum. Frequencies of two out of 19 CD3+ CD56+ FlowSOM clusters were significantly diminished in allergic individuals, demonstrating less frequent presence of cells with cytolytic, presumably protective, capacity in these donors consistent with defective expansion or their recruitment to the affected tissue. Our results contribute to defining specific cell populations to be targeted during therapy for allergic conditions.


CD3 Complex/immunology , CD56 Antigen/immunology , T-Lymphocyte Subsets/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Differentiation/immunology , Humans , Killer Cells, Natural/immunology , Phenotype , Receptors, Antigen, T-Cell, gamma-delta/immunology
...