Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Biol Chem ; 298(9): 102256, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839855

RESUMEN

Nuclear lamins maintain the nuclear envelope structure by forming long linear filaments via two alternating molecular arrangements of coiled-coil dimers, known as A11 and A22 binding modes. The A11 binding mode is characterized by the antiparallel interactions between coil 1b domains, whereas the A22 binding mode is facilitated by interactions between the coil 2 domains of lamin. The junction between A11- and A22-interacting dimers in the lamin tetramer produces another parallel head-tail interaction between coil 1a and the C-terminal region of coil 2, called the ACN interaction. During mitosis, phosphorylation in the lamin N-terminal head region by the cyclin-dependent kinase (CDK) complex triggers depolymerization of lamin filaments, but the associated mechanisms remain unknown at the molecular level. In this study, we revealed using the purified proteins that phosphorylation by the CDK1 complex promotes disassembly of lamin filaments by directly abolishing the ACN interaction between coil 1a and the C-terminal portion of coil 2. We further observed that this interaction was disrupted as a result of alteration of the ionic interactions between coil 1a and coil 2. Combined with molecular modeling, we propose a mechanism for CDK1-dependent disassembly of the lamin filaments. Our results will help to elucidate the cell cycle-dependent regulation of nuclear morphology at the molecular level.


Asunto(s)
Proteína Quinasa CDC2 , Filamentos Intermedios , Lamina Tipo A , Proteína Quinasa CDC2/química , Humanos , Filamentos Intermedios/química , Lamina Tipo A/química , Polimerizacion , Dominios Proteicos
2.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502421

RESUMEN

Cyclins are the activators of cyclin-dependent kinase (CDK) complex, but they also act as docking scaffolds for different short linear motifs (SLiMs) in CDK substrates and inhibitors. According to the unified model of CDK function, the cell cycle is coordinated by CDK both via general CDK activity thresholds and cyclin-specific substrate docking. Recently, it was found that the G1-cyclins of S. cerevisiae have a specific function in promoting polarization and growth of the buds, making the G1 cyclins essential for cell survival. Thus, while a uniform CDK specificity of a single cyclin can be sufficient to drive the cell cycle in some cells, such as in fission yeast, cyclin specificity can be essential in other organisms. However, the known G1-CDK specific LP docking motif, was not responsible for this essential function, indicating that G1-CDKs use yet other unknown docking mechanisms. Here we report a discovery of a G1 cyclin-specific (Cln1,2) lysine-arginine-rich helical docking motif (the K/R motif) in G1-CDK targets involved in the mating pathway (Ste7), transcription (Xbp1), bud morphogenesis (Bud2) and spindle pole body (Spc29, Spc42, Spc110, Sli15) function of S. cerevisiae. We also show that the docking efficiency of K/R motif can be regulated by basophilic kinases such as protein kinase A. Our results further widen the list of cyclin specificity mechanisms and may explain the recently demonstrated unique essential function of G1 cyclins in budding yeast.


Asunto(s)
Proteína Quinasa CDC2/química , Complejos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 596(7870): 138-142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34290405

RESUMEN

In early mitosis, the duplicated chromosomes are held together by the ring-shaped cohesin complex1. Separation of chromosomes during anaphase is triggered by separase-a large cysteine endopeptidase that cleaves the cohesin subunit SCC1 (also known as RAD212-4). Separase is activated by degradation of its inhibitors, securin5 and cyclin B6, but the molecular mechanisms of separase regulation are not clear. Here we used cryogenic electron microscopy to determine the structures of human separase in complex with either securin or CDK1-cyclin B1-CKS1. In both complexes, separase is inhibited by pseudosubstrate motifs that block substrate binding at the catalytic site and at nearby docking sites. As in Caenorhabditis elegans7 and yeast8, human securin contains its own pseudosubstrate motifs. By contrast, CDK1-cyclin B1 inhibits separase by deploying pseudosubstrate motifs from intrinsically disordered loops in separase itself. One autoinhibitory loop is oriented by CDK1-cyclin B1 to block the catalytic sites of both separase and CDK19,10. Another autoinhibitory loop blocks substrate docking in a cleft adjacent to the separase catalytic site. A third separase loop contains a phosphoserine6 that promotes complex assembly by binding to a conserved phosphate-binding pocket in cyclin B1. Our study reveals the diverse array of mechanisms by which securin and CDK1-cyclin B1 bind and inhibit separase, providing the molecular basis for the robust control of chromosome segregation.


Asunto(s)
Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Ciclina B1/química , Ciclina B1/metabolismo , Securina/química , Securina/metabolismo , Separasa/química , Separasa/metabolismo , Secuencias de Aminoácidos , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/ultraestructura , Quinasas CDC2-CDC28/química , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Microscopía por Crioelectrón , Ciclina B1/ultraestructura , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Fosfoserina/metabolismo , Unión Proteica , Dominios Proteicos , Securina/ultraestructura , Separasa/antagonistas & inhibidores , Separasa/ultraestructura , Especificidad por Sustrato
4.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072728

RESUMEN

Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease's pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.


Asunto(s)
Biología Computacional , Descubrimiento de Drogas , Perfilación de la Expresión Génica , Variación Genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Proteínas Quinasas/química , Biomarcadores de Tumor , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/química , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Quinasas Relacionadas con NIMA/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Pronóstico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Relación Estructura-Actividad , Transcriptoma
5.
J Biol Chem ; 297(1): 100837, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118235

RESUMEN

Talin (TLN1) is a mechanosensitive component of adhesion complexes that directly couples integrins to the actin cytoskeleton. In response to force, talin undergoes switch-like behavior of its multiple rod domains that modulate interactions with its binding partners. Cyclin-dependent kinase-1 (CDK1) is a key regulator of the cell cycle, exerting its effects through synchronized phosphorylation of a large number of protein targets. CDK1 activity maintains adhesion during interphase, and its inhibition is a prerequisite for the tightly choreographed changes in cell shape and adhesion that are required for successful mitosis. Using a combination of biochemical, structural, and cell biological approaches, we demonstrate a direct interaction between talin and CDK1 that occurs at sites of integrin-mediated adhesion. Mutagenesis demonstrated that CDK1 contains a functional talin-binding LD motif, and the binding site within talin was pinpointed to helical bundle R8. Talin also contains a consensus CDK1 phosphorylation motif centered on S1589, a site shown to be phosphorylated by CDK1 in vitro. A phosphomimetic mutant of this site within talin lowered the binding affinity of the cytoskeletal adaptor KANK and weakened the response of this region to force as measured by single molecule stretching, potentially altering downstream mechanotransduction pathways. The direct binding of the master cell cycle regulator CDK1 to the primary integrin effector talin represents a coupling of cell proliferation and cell adhesion machineries and thereby indicates a mechanism by which the microenvironment can control cell division in multicellular organisms.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mecanotransducción Celular , Talina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Quinasa CDC2/química , Adhesión Celular , Línea Celular Tumoral , Humanos , Ratones , Modelos Biológicos , Fosforilación , Unión Proteica , Dominios Proteicos , Talina/química
6.
J Biol Chem ; 297(1): 100851, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34089703

RESUMEN

Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.


Asunto(s)
Proteína Quinasa CDC2/genética , Ciclina A2/genética , Fosfolipasas A1/genética , Proteína Quinasa CDC2/química , Membrana Celular/química , Membrana Celular/genética , Ciclina A2/química , Glicerofosfolípidos/química , Glicerofosfolípidos/genética , Células HEK293 , Humanos , Fosfolipasas A1/química , Fosfolipasas A1/metabolismo , Fosforilación/genética , Paraplejía Espástica Hereditaria/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
J Med Chem ; 63(13): 6708-6726, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502343

RESUMEN

Genetic depletion of cyclin-dependent kinase 12 (CDK12) or selective inhibition of an analog-sensitive CDK12 reduces DNA damage repair gene expression, but selective inhibition of endogenous CDK12 is difficult. Here, we report the development of MFH290, a novel cysteine (Cys)-directed covalent inhibitor of CDK12/13. MFH290 forms a covalent bond with Cys-1039 of CDK12, exhibits excellent kinome selectivity, inhibits the phosphorylation of serine-2 in the C-terminal domain (CTD) of RNA-polymerase II (Pol II), and reduces the expression of key DNA damage repair genes. Importantly, these effects were demonstrated to be CDK12-dependent as mutation of Cys-1039 rendered the kinase refractory to MFH290 and restored Pol II CTD phosphorylation and DNA damage repair gene expression. Consistent with its effect on DNA damage repair gene expression, MFH290 augments the antiproliferative effect of the PARP inhibitor olaparib.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteína Quinasa CDC2/química , Quinasas Ciclina-Dependientes/química , Humanos , Células Jurkat , Modelos Moleculares , Conformación Proteica
8.
Nat Prod Res ; 34(19): 2715-2722, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30887847

RESUMEN

Fungal factories emerge as a promising source for the production of bioactive natural products. This study reports the isolation and structure elucidation of pulchranin A, for the first time, from an endophytic fungus (Aspergillus TRL1), which was cultured from Tabebuia rosea (Bignoniaceae) stems and identified by DNA ITS sequencing. Pulchranin A showed promising in-vitro cytotoxic effects against breast (MCF-7), liver (Hep-G2) and colorectal (HCT) cell lines, with IC50 values of 63, 80 and 91 µg/mL, respectively. In addition, it inhibited three cyclin-dependent kinases (CDK1, CDK2 and CDK4) in MCF-7 cells with IC50 values of 9.82, 15.6 and 2.7 µg/mL, respectively. Results were further supported by in-silico molecular docking of pulchranin A to CDK1, CDK2, and CDK4 crystal structures, where it demonstrated good interactions by H-bonding, hydrophobic and Pi-Pi interactions with different amino acid residues of these enzymes. Pulchranin A might be a potential CDK inhibitor in human breast cancer cells.[Figure: see text].


Asunto(s)
Antineoplásicos/farmacología , Aspergillus/química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Guanidinas/química , Guanidinas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Aspergillus/genética , Aspergillus/aislamiento & purificación , Bignoniaceae/microbiología , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/química , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Endófitos/química , Células Hep G2 , Humanos , Enlace de Hidrógeno , Células MCF-7 , Simulación del Acoplamiento Molecular
9.
Cell Death Dis ; 10(6): 423, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142736

RESUMEN

The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Mitocondrias/genética , ARN Largo no Codificante/metabolismo , Animales , Antagomirs/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo
10.
J Mol Biol ; 431(11): 2127-2142, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30974121

RESUMEN

Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Acetilación , Regulación Alostérica , Proteína Quinasa CDC2/química , Dominio Catalítico , Ciclo Celular , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares
11.
ACS Sens ; 4(1): 76-86, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30588803

RESUMEN

Fyn kinase plays crucial roles in hematology and T cell signaling; however, there are currently limited tools to visualize the dynamic Fyn activity in live cells. Here we developed and characterized a highly sensitive Fyn biosensor based on fluorescence resonance energy transfer (FRET) to monitor Fyn kinase activity in live cells. Our results show that Fyn kinase activity can be induced in both mouse embryonic fibroblasts (MEFs) and T cells by ligand engagement. Two different motifs were further introduced to target the biosensor at the cellular membrane microdomains in MEFs, revealing that the Fyn-tagged biosensor had 70% greater response to growth factor stimulation than the Lyn-tagged version. This suggests that the plasma membrane microdomains can be categorized into different functional subdomains. Further experiments show that while the membrane accessibility is necessary for Fyn activation, the localization of Fyn outside of its microdomains causes its hyperactivity, indicating that membrane microdomains provide a suppressive microenvironment for Fyn regulation in MEFs. Interestingly, a relatively high Fyn activity can be observed at perinuclear regions, further supporting the notion that the membrane microenvironment has a significant impact on the local molecular functions. Our work hence highlights a novel Fyn FRET biosensor for live cell imaging and its application in revealing an intricate submembrane regulation of Fyn in live MEFs.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microdominios de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-fyn/análisis , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Animales , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Jurkat , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Dominios Homologos src/genética
12.
Clin Cancer Res ; 24(24): 6459-6470, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30108102

RESUMEN

PURPOSE: Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN: Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS: K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS: Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/deficiencia , Genes BRCA1 , Genes BRCA2 , Proteínas de Neoplasias/deficiencia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Neoplasias de la Mama/patología , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Ratones , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Regiones Promotoras Genéticas , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
ChemMedChem ; 13(16): 1681-1694, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29883531

RESUMEN

WEE1 kinase regulates the G2 /M cell-cycle checkpoint, a critical mechanism for DNA repair in cancer cells that can confer resistance to DNA-damaging agents. We previously reported a series of pyrazolopyrimidinones based on AZD1775, a known WEE1 inhibitor, as an initial investigation into the structural requirements for WEE1 inhibition. Our lead inhibitor demonstrated WEE1 inhibition in the same nanomolar range as AZD1775, and potentiated the effects of cisplatin in medulloblastoma cells, but had reduced single-agent cytotoxicity. These results prompted the development of a more comprehensive series of WEE1 inhibitors. Herein we report a series of pyrazolopyrimidinones and identify a more potent WEE1 inhibitor than AZD1775 and additional compounds that demonstrate that WEE1 inhibition can be achieved with reduced single-agent cytotoxicity. These studies support that WEE1 inhibition can be uncoupled from the potent cytotoxic effects observed with AZD1775, and this may have important ramifications in the clinical setting where WEE1 inhibitors are used as chemosensitizers for DNA-targeted chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Pirimidinonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Sitios de Unión , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Pruebas de Enzimas , Humanos , Estructura Molecular , Proteínas Nucleares/química , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/química , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirazoles/toxicidad , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/toxicidad , Pirimidinonas/síntesis química , Pirimidinonas/metabolismo , Pirimidinonas/toxicidad , Relación Estructura-Actividad
14.
Cell Cycle ; 17(4): 421-427, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29262732

RESUMEN

Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1ß (PP1cß) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cß interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteína Fosfatasa 1/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína Quinasa CDC2/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Fosfatasa de Miosina de Cadena Ligera/química , Fosfopéptidos/análisis , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Quinasa Tipo Polo 1
15.
J Med Genet ; 55(1): 28-38, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021403

RESUMEN

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Asunto(s)
Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación/genética , Adolescente , Niño , Secuencia Conservada , Femenino , Heterocigoto , Humanos , Masculino , Modelos Moleculares , Mutación Missense/genética , Dominios Proteicos , Síndrome , Termodinámica
16.
Proc Natl Acad Sci U S A ; 113(50): E8051-E8058, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911825

RESUMEN

Protein-protein interactions play a central role in cellular function. Improving the understanding of complex formation has many practical applications, including the rational design of new therapeutic agents and the mechanisms governing signal transduction networks. The generally large, flat, and relatively featureless binding sites of protein complexes pose many challenges for drug design. Fragment docking and direct coupling analysis are used in an integrated computational method to estimate druggable protein-protein interfaces. (i) This method explores the binding of fragment-sized molecular probes on the protein surface using a molecular docking-based screen. (ii) The energetically favorable binding sites of the probes, called hot spots, are spatially clustered to map out candidate binding sites on the protein surface. (iii) A coevolution-based interface interaction score is used to discriminate between different candidate binding sites, yielding potential interfacial targets for therapeutic drug design. This approach is validated for important, well-studied disease-related proteins with known pharmaceutical targets, and also identifies targets that have yet to be studied. Moreover, therapeutic agents are proposed by chemically connecting the fragments that are strongly bound to the hot spots.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular/métodos , Dominios y Motivos de Interacción de Proteínas , Sitios de Unión , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/efectos de los fármacos , Quinasas CDC2-CDC28/antagonistas & inhibidores , Quinasas CDC2-CDC28/química , Quinasas CDC2-CDC28/efectos de los fármacos , Evolución Molecular , Proteasa del VIH/química , Proteasa del VIH/efectos de los fármacos , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/química , Histona Desacetilasa 1/efectos de los fármacos , Histona Desacetilasas/química , Histona Desacetilasas/efectos de los fármacos , Humanos , Sondas Moleculares , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Proteínas Represoras/efectos de los fármacos , Transactivadores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/efectos de los fármacos
17.
Nat Genet ; 48(9): 1060-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479907

RESUMEN

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.


Asunto(s)
Autoantígenos/genética , Proteína Quinasa CDC2/genética , Cardiopatías Congénitas/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mutación/genética , Proteína Quinasa C/genética , Proteína Quinasa CDC2/química , Exoma/genética , Femenino , Humanos , Masculino , Conformación Proteica , Eliminación de Secuencia , Síndrome
18.
Nat Chem Biol ; 12(10): 876-84, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571479

RESUMEN

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small molecules capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.


Asunto(s)
Anilidas/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Cisteína/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Anilidas/síntesis química , Anilidas/química , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Muerte Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Cisteína/metabolismo , Daño del ADN , Humanos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química
19.
Eur J Med Chem ; 122: 164-177, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27344493

RESUMEN

A series of new (N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives (8-35) were designed, synthesized and evaluated as CDK1/Cdc2 inhibitors. Biological evaluation assays indicated that compounds 16 and 27 showed the most potent growth inhibitory activity against human cancer cell lines (MIAPaCa-2, MCF-7 and HeLa) with GI50 values ranging from 0.13 to 0.7 µM, compared with the positive control nocodazole (0.81-0.95 µM). Flow cytometric analysis revealed that these compounds induce cell cycle arrest in the G2/M phase and Western blot analysis suggested that compound treatment resulted in reduction of CDK1 expression levels in MCF-7 cell line. Moreover, the apoptosis inducing effect of the compounds was studied using Hoechst staining, Rhodamine 123 staining (MMP), carboxy-DCFDA staining (ROS), Annexin V-FITC assay. Based on these studies, two compounds 16 and 27 have been identified as promising new molecules that have the potential to be developed as leads.


Asunto(s)
Proteína Quinasa CDC2/antagonistas & inhibidores , Diseño de Fármacos , Pirazoles/síntesis química , Pirazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2/química , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Técnicas de Química Sintética , Ensayos de Selección de Medicamentos Antitumorales , Fase G2/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirazoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
20.
Nat Commun ; 7: 11265, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068241

RESUMEN

Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.


Asunto(s)
Actinas/metabolismo , Proteína Quinasa CDC2/metabolismo , Glicoproteínas de Membrana/metabolismo , Metafase , Proteínas de Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citología , Saccharomycetales/enzimología , Proteína Quinasa CDC2/química , Simulación por Computador , Ciclinas/metabolismo , Mutación , Fosforilación , Fosfotreonina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA