Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0063324, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587428

RESUMEN

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Asunto(s)
Antifúngicos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa , Candida albicans , Inhibidores Enzimáticos , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Candida albicans/genética , Antifúngicos/farmacología , Antifúngicos/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Pruebas de Sensibilidad Microbiana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Fosfatidilserinas/metabolismo , Furanos , Tiofenos
2.
J Biol Chem ; 299(6): 104756, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116705

RESUMEN

Phosphatidylserine (PS) synthase from Candida albicans, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis. Rational drug design or small molecule screening are effective ways to identify specific inhibitors of Cho1, but both will be facilitated by protein purification. Due to the transmembrane nature of Cho1, methods were needed to solubilize and purify the native form of Cho1. Here, we used six non-ionic detergents and three styrene maleic acids (SMAs) to solubilize an HA-tagged Cho1 protein from the total microsomal fractions. Blue native PAGE and immunoblot analysis revealed a single band corresponding to Cho1 in all detergent-solubilized fractions, while two bands were present in the SMA2000-solubilized fraction. Our enzymatic assay suggests that digitonin- or DDM-solubilized enzyme has the most PS synthase activity. Pull-downs of HA-tagged Cho1 from the digitonin-solubilized fraction reveal an apparent MW of Cho1 consistent with a hexamer. Furthermore, negative-staining electron microscopy analysis and AlphaFold2 structure prediction modeling suggest the hexamer is composed of a trimer of dimers. We purified Cho1 protein to near-homogeneity as a hexamer using affinity chromatography and TEV protease treatment, and optimized Cho1 enzyme activity for manganese and detergent concentrations, temperature (24 °C), and pH (8.0). The purified Cho1 has a Km for its substrate CDP-diacylglycerol of 72.20 µM with a Vmax of 0.079 nmol/(µg∗min) while exhibiting a sigmoidal kinetic curve for its other substrate serine, indicating cooperative binding. Purified hexameric Cho1 can potentially be used in downstream structure determination and small drug screening.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa , Candida albicans , Candida albicans/enzimología , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Detergentes/farmacología , Digitonina/metabolismo
3.
Nat Commun ; 12(1): 6982, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848707

RESUMEN

Phospholipids are the major components of the membrane in all type of cells and organelles. They also are critical for cell metabolism, signal transduction, the immune system and other critical cell functions. The biosynthesis of phospholipids is a complex multi-step process with high-energy intermediates. Several enzymes in different metabolic pathways are involved in the initial phospholipid synthesis and its subsequent conversion. While the "Kennedy pathway" is the main pathway in mammalian cells, in bacteria and lower eukaryotes the precursor CDP-DAG is used in the de novo pathway by CDP-DAG alcohol O-phosphatidyl transferases to synthetize the basic lipids. Here we present the high-resolution structures of phosphatidyl serine synthase from Methanocaldococcus jannaschii crystallized in four different states. Detailed structural and functional analysis of the different structures allowed us to identify the substrate binding site and show how CDP-DAG, serine and two essential metal ions are bound and oriented relative to each other. In close proximity to the substrate binding site, two anions were identified that appear to be highly important for the reaction. The structural findings were confirmed by functional activity assays and suggest a model for the catalytic mechanism of CDP-DAG alcohol O-phosphatidyl transferases, which synthetize the phospholipids essential for the cells.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Methanocaldococcus/enzimología , Sitios de Unión , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Cristalografía por Rayos X , Citidina Difosfato , Escherichia coli , Lípidos de la Membrana/química , Fosfatidilserinas , Fosfolípidos , Fosfotransferasas , Transferasas
4.
J Biol Chem ; 292(32): 13230-13242, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28673963

RESUMEN

The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Fosfatidato Fosfatasa/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfatidato Fosfatasa/química , Fosfatidato Fosfatasa/genética , Fosfolípidos/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Elementos de Respuesta , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
5.
Nat Commun ; 5: 4244, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24968740

RESUMEN

Phospholipids are elemental building-block molecules for biological membranes. Biosynthesis of phosphatidylinositol, phosphatidylglycerol and phosphatidylserine requires a central liponucleotide intermediate named cytidine-diphosphate diacylglycerol (CDP-DAG). The CDP-DAG synthetase (Cds) is an integral membrane enzyme catalysing the formation of CDP-DAG, an essential step for phosphoinositide recycling during signal transduction. Here we report the structure of the Cds from Thermotoga maritima (TmCdsA) at 3.4 Å resolution. TmCdsA forms a homodimer and each monomer contains nine transmembrane helices arranged into a novel fold with three domains. An unusual funnel-shaped cavity penetrates half way into the membrane, allowing the enzyme to simultaneously accept hydrophilic substrate (cytidine 5'-triphosphate (CTP)/deoxy-CTP) from cytoplasm and hydrophobic substrate (phosphatidic acid) from membrane. Located at the bottom of the cavity, a Mg(2+)-K(+) hetero-di-metal centre coordinated by an Asp-Asp dyad serves as the cofactor of TmCdsA. The results suggest a two-metal-ion catalytic mechanism for the Cds-mediated synthesis of CDP-DAG at the membrane-cytoplasm interface.


Asunto(s)
Proteínas Bacterianas/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Membrana Celular/metabolismo , Fosfolípidos/biosíntesis , Thermotoga maritima/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/fisiología , Cationes , Membrana Celular/química , Magnesio/metabolismo , Potasio/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Thermotoga maritima/fisiología
6.
J Biol Chem ; 285(15): 11526-36, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20145252

RESUMEN

The CHO1-encoded phosphatidylserine synthase from Saccharomyces cerevisiae is phosphorylated and inhibited by protein kinase A in vitro. CHO1 alleles bearing Ser(46) --> Ala and/or Ser(47) --> Ala mutations were constructed and expressed in a cho1Delta mutant lacking phosphatidylserine synthase. In vitro, the S46A/S47A mutation reduced the total amount of phosphorylation by 90% and abolished the inhibitory effect protein kinase A had on phosphatidylserine synthase activity. The enzyme phosphorylation by protein kinase A, which was time- and dose-dependent and dependent on the concentration of ATP, caused a electrophoretic mobility shift from a 27-kDa form to a 30-kDa form. The two electrophoretic forms of phosphatidylserine synthase were present in exponential phase cells, whereas only the 27-kDa form was present in stationary phase cells. In vivo labeling with (32)P(i) and immune complex analysis showed that the 30-kDa form was predominantly phosphorylated when compared with the 27-kDa form. However, the S46A/S47A mutations abolished the protein kinase A-mediated electrophoretic mobility shift. The S46A/S47A mutations also caused a 55% reduction in the total amount of phosphatidylserine synthase in exponential phase cells and a 66% reduction in the amount of enzyme in stationary phase cells. In phospholipid composition analysis, cells expressing the S46A/S47A mutant enzyme exhibited a 57% decrease in phosphatidylserine and a 40% increase in phosphatidylinositol. These results indicate that phosphatidylserine synthase is phosphorylated on Ser(46) and Ser(47) by protein kinase A, which results in a higher amount of enzyme for the net effect of stimulating the synthesis of phosphatidylserine.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Serina/química , Alelos , Sitios de Unión , Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Mutación , Péptidos/química , Fosfatidilinositoles/química , Fosfolípidos/química , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología
7.
Eukaryot Cell ; 6(11): 2092-101, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17905925

RESUMEN

To investigate the contributions of phosphatidylserine to the growth and morphogenesis of the rod-shaped fission yeast Schizosaccharomyces pombe, we have characterized the single gene in this organism, pps1, encoding a predicted phosphatidylserine synthase. S. pombe pps1Delta mutants grow slowly in rich medium and are inviable in synthetic minimal medium. They do not produce detectable phosphatidylserine in vivo and possess negligible in vitro phosphatidylserine synthase activity, indicating that pps1 encodes the major phosphatidylserine synthase activity in S. pombe. Supplementation of growth medium with ethanolamine partially suppresses the growth-defective phenotype of pps1Delta cells, reflecting the likely importance of phosphatidylserine as a precursor for phosphatidylethanolamine in S. pombe. In medium lacking ethanolamine, pps1Delta mutants exhibit striking cell morphology, cytokinesis, actin cytoskeleton, and cell wall remodeling and integrity defects. Overexpression of pps1 likewise leads to defects in cell morphology and cytokinesis, thus implicating phosphatidylserine as a dosage-dependent regulator of these processes. During log-phase growth, green fluorescent protein-Pps1p fusion proteins are concentrated at the cell and nuclear peripheries as well as presumptive endoplasmic reticulum membranes, while in stationary-phase cells, they are redistributed to unusual cytoplasmic structures of unknown origin. Moreover, stationary-phase pps1Delta cultures retain very poor viability relative to wild-type S. pombe cells, even in medium containing ethanolamine, demonstrating a role for phosphatidylserine in the physiological adaptations required for stationary-phase survival. Our findings reveal novel cellular functions for phosphatidylserine and emphasize the usefulness of S. pombe as a model organism for elucidating potentially conserved biological and molecular functions of this phospholipid.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Actinas/metabolismo , Secuencia de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Pared Celular/efectos de los fármacos , Pared Celular/enzimología , Colina/farmacología , Clonación Molecular , Citocinesis/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/enzimología , Etanolamina/farmacología , Eliminación de Gen , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología
8.
J Bacteriol ; 185(4): 1181-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12562787

RESUMEN

CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) activity in cell extracts of Methanothermobacter thermautotrophicus cells was characterized. The enzyme catalyzed the formation of unsaturated archaetidylserine from CDP-unsaturated archaeol and L-serine. The identity of the reaction products was confirmed by thin-layer chromatography, fast atom bombardment-mass spectrum analysis, and chemical degradation. The enzyme showed maximal activity in the presence of 10 mM Mn2+ and 1% Triton X-100. Among various synthetic substrate analogs, both enantiomers of CDP-unsaturated archaeols with ether-linked geranylgeranyl chains and CDP-saturated archaeol with ether-linked phytanyl chains were similarly active toward the archaetidylserine synthase. The activity on the ester analog of the substrate was two to three times higher than that on the corresponding ether-type substrate. The activity of D-serine with the enzyme was 30% of that observed for L-serine. A trace amount of an acid-labile, unsaturated archaetidylserine intermediate was detected in the cells by a pulse-labeling experiment. A gene (MT1027) in M. thermautotrophicus genome annotated as the gene encoding phosphatidylserine synthase was found to be homologous to Bacillus subtilis pssA but not to Escherichia coli pssA. The substrate specificity of phosphatidylserine synthase from B. subtilis was quite similar to that observed for the M. thermautotrophicus archaetidylserine synthase, while the E. coli enzyme had a strong preference for CDP-1,2-diacyl-sn-glycerol. It was concluded that M. thermautotrophicus archaetidylserine synthase belongs to subclass II phosphatidylserine synthase (B. subtilis type) on the basis of not only homology but also substrate specificity and some enzymatic properties. The possibility that a gene encoding the subclass II phosphatidylserine synthase might be transferred from a bacterium to an ancestor of methanogens is discussed.


Asunto(s)
Methanobacteriaceae/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Methanobacteriaceae/genética , Datos de Secuencia Molecular , Azúcares de Nucleósido Difosfato/metabolismo , Octoxinol/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Alineación de Secuencia , Serina/metabolismo , Especificidad por Sustrato
9.
J Bacteriol ; 184(15): 4114-23, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12107128

RESUMEN

Genes involved in the production of the extracellular (1-->3)-beta-glucan, curdlan, by Agrobacterium sp. strain ATCC 31749 were described previously (Stasinopoulos et al., Glycobiology 9:31-41, 1999). To identify additional curdlan-related genes whose protein products occur in the cell envelope, the transposon TnphoA was used as a specific genetic probe. One mutant was unable to produce high-molecular-mass curdlan when a previously uncharacterized gene, pss(AG), encoding a 30-kDa, membrane-associated phosphatidylserine synthase was disrupted. The membranes of the mutant lacked phosphatidylethanolamine (PE), whereas the phosphatidylcholine (PC) content was unchanged and that of both phosphatidylglycerol and cardiolipin was increased. In the mutant, the continued appearance of PC revealed that its production by this Agrobacterium strain is not solely dependent on PE in a pathway controlled by the Pss(AG) protein at its first step. Moreover, PC can be produced in a medium lacking choline. When the pss(AG)::TnphoA mutation was complemented by the intact pss(AG) gene, both the curdlan deficiency and the phospholipid profile were restored to wild-type, demonstrating a functional relationship between these two characteristics. The effect of the changed phospholipid profile could occur through an alteration in the overall charge distribution on the membrane or a specific requirement for PE for the folding into or maintenance of an active conformation of any or all of the structural proteins involved in curdlan production or transport.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Glucanos/metabolismo , Polisacáridos Bacterianos/metabolismo , Rhizobium/genética , beta-Glucanos , Fosfatasa Alcalina , Secuencia de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/antagonistas & inhibidores , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Cardiolipinas/metabolismo , Colina/metabolismo , Clonación Molecular , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Elementos Transponibles de ADN , Escherichia coli/genética , Proteínas de Escherichia coli , Eliminación de Gen , Vectores Genéticos , Glucanos/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceroles/metabolismo , Proteínas Recombinantes/metabolismo , Rhizobium/enzimología , Rhizobium/metabolismo , Alineación de Secuencia
10.
Exp Parasitol ; 98(4): 171-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11560410

RESUMEN

Phospholipid metabolism of the microsporidian Encephalitozoon cuniculi, an obligate intracellular parasite, has been investigated. Labeled precursor incorporation experiments have shown that phosphatidylserine decarboxylase and phosphatidylethanolamine N-methyltransferase are more active in cells infected by E. cuniculi than in uninfected cells. In contrast, no difference was observed in the activity of Kennedy pathway's enzymes, the mammalian pathway. This suggests the occurrence in microsporidia of a bacteria- and fungi-typical pathway for phospholipid synthesis, which is supported by the identification of two genes implicated in this pathway, the cds gene encoding the key enzyme CDP-diacylglycerol synthase (E.C. 2.7.7.41) and the pss gene for CDP-alcohol phosphatidyltransferase. The pss gene could encode phosphatidylserine synthase (E.C. 2.7.8.8.), which catalyses the de novo synthesis of phosphatidylserine in bacteria and fungi. The complete CDP-diacylglycerol synthase messenger has been isolated and shows very short 5' and 3' untranslated regions. This is strong evidence for the functionality of a metabolic pathway which could be a potential target against microsporidia which infect humans.


Asunto(s)
Encephalitozoon cuniculi/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Carboxiliasas/metabolismo , Colina/metabolismo , Encephalitozoon cuniculi/enzimología , Encephalitozoon cuniculi/genética , Etanolamina/metabolismo , Metionina/metabolismo , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Fosfatidiletanolamina N-Metiltransferasa , Fosfolípidos/biosíntesis , Serina/metabolismo
11.
Biophys J ; 78(3): 1400-12, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10692325

RESUMEN

The interaction of phosphatidylserine (PS) synthase from Escherichia coli with lipid membranes was studied with a recently developed variant of the surface plasmon resonance technique, referred to as coupled plasmon-waveguide resonance spectroscopy. The features of the new technique are increased sensitivity and spectral resolution, and a unique ability to directly measure the structural anisotropy of lipid and proteolipid films. Solid-supported lipid bilayers with the following compositions were used: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) (80:20, mol/mol); POPC-POPA (60:40, mol/mol); and POPC-1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) (75:25, mol/mol). Addition of either POPA or POPG to a POPC bilayer causes a considerable increase of both the bilayer thickness and its optical anisotropy. PS synthase exhibits a biphasic interaction with the bilayers. The first phase, occurring at low protein concentrations, involves both electrostatic and hydrophobic interactions, although it is dominated by the latter, and the enzyme causes a local decrease of the ordering of the lipid molecules. The second phase, occurring at high protein concentrations, is predominantly controlled by electrostatic interactions, and results in a cooperative binding of the enzyme to the membrane surface. Addition of the anionic lipids to a POPC bilayer causes a 5- to 15-fold decrease in the protein concentration at which the first binding phase occurs. The results reported herein lend experimental support to a previously suggested mechanism for the regulation of the polar head group composition in E. coli membranes.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Escherichia coli/enzimología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Anisotropía , Cinética , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Especificidad por Sustrato , Resonancia por Plasmón de Superficie/métodos
12.
Biochem J ; 342 ( Pt 1): 57-64, 1999 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10432300

RESUMEN

Phosphatidylserine (PtdSer) is synthesized in mammalian cells by two base-exchange enzymes: PtdSer synthase (PSS)-1 primarily uses phosphatidylcholine as a substrate for exchange with serine, whereas PSS2 uses phosphatidylethanolamine (PtdEtn). We previously expressed murine PSS1 in McArdle hepatoma cells. The activity of PSS1 in vitro and the synthesis of PtdSer and PtdSer-derived PtdEtn were increased, whereas PtdEtn synthesis from the CDP-ethanolamine pathway was inhibited [Stone, Cui and Vance (1998) J. Biol. Chem. 273, 7293-7302]. We have now cloned and stably expressed a murine PSS2 cDNA in McArdle cells and M.9.1.1 cells [which are ethanolamine-requiring mutant Chinese hamster ovary (CHO) cells defective in PSS1]. Expression of the PSS2 in M.9.1.1 cells reversed the ethanolamine auxotrophy. However, the PtdEtn content was not normalized unless the culture medium was supplemented with ethanolamine. In both M.9.1.1 and hepatoma cells transfected with PSS2 cDNA the rate of synthesis of PtdSer and PtdSer-derived PtdEtn did not exceed that in parental CHO cells or control McArdle cells respectively, in contrast to cells expressing similar levels of murine PSS1. These observations suggest that PtdSer synthesis via murine PSS2, but not PSS1, is regulated by end-product inhibition. Moreover, expression of murine PSS2 in McArdle cells did not inhibit PtdEtn synthesis via the CDP-ethanolamine pathway, whereas expression of similar levels of PSS1 activity inhibited this pathway by approx. 50%. We conclude that murine PSS1 and PSS2, which are apparently derived from different genes, independently modulate phospholipid metabolism. In addition, mRNAs encoding the two synthases are differentially expressed in several murine tissues, supporting the idea that PSS1 and PSS2 might perform unique functions.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Hígado/enzimología , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , Células CHO , División Celular , Clonación Molecular , Cricetinae , Citidina Difosfato/análogos & derivados , Citidina Difosfato/metabolismo , Etanolaminas/metabolismo , Cinética , Hígado/citología , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Serina/metabolismo , Células Tumorales Cultivadas
13.
Biochim Biophys Acta ; 1348(1-2): 214-27, 1997 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-9370336

RESUMEN

This review summarizes the characteristics of two subclasses of phosphatidylserine synthases: subclass I of gram-negative bacteria and subclass II of gram-positive bacteria. Unlike other phospholipid biosynthetic enzymes, the phosphatidylserine synthases of gram-negative bacteria, the enzyme from Escherichia coli has been extensively examined and characterized, are associated with the ribosomal fraction of cell lysates. Enzymes from gram-positive bacteria are membrane-bound, and the structural gene of membrane-bound synthase of Bacillus subtilis has been cloned and used in our laboratory for replacement with the E. coli counterpart. This review discusses the possible regulatory mechanisms of phosphatidylethanolamine synthesis in E. coli, which are closely related to the subcellular localization and properties of phosphatidylserine synthase, and highlights the cross-feedback regulatory model which assumes two forms of phosphatidylserine synthase (only molecules bound with acidic phospholipids of the membrane are active in phosphatidylserine synthesis, whereas others in the cytoplasm are latent). In addition, considerations of the origin and evolution of the two vastly different subclasses of phosphatidylserine synthases of bacteria are also presented.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Escherichia coli/enzimología , Isoenzimas/metabolismo , Secuencia de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Isoenzimas/química , Isoenzimas/genética , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
14.
Biochim Biophys Acta ; 1348(1-2): 228-35, 1997 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-9370337

RESUMEN

Whereas mammalian cells produce PS by a base exchange reaction from preexisting phospholipids, yeast cells synthesize PS from CDP-diacylglycerol and serine by the PS synthase reaction. Yeast PS synthase was purified to homogeneity and shown to have a molecular mass of 23 kDa. The activity is dependent on either Mg2+ or Mn2+ and Triton X-100. The enzyme specifically transfers the phosphatidyl group from CDP-diacylglycerol or dCDP-diacylglycerol to L-serine, but not to threonine, cysteine and ethanolamine. The PSS/CHO1 gene encoding the enzyme was cloned by the complementation of the choline auxotrophic pss/cho1 mutant. The deduced protein comprises 279 amino acids with a calculated molecular mass of 30,804. The primary translate undergoes proteolytic processing to the enzymatically more active 23-kDa enzyme. The deduced amino acid sequence contains several putative membrane-spanning regions and resembles that of the Bacillus subtilis enzyme, but not those of the E. coli and Haemophilus influenzae enzymes. The sequence also contains the local, conserved region found in enzymes catalyzing the transfer of the phosphoalcohol moiety from CDP-alcohol, such as PI synthase, cholinephosphotransferase and phosphatidylglycerolphosphate synthase. The activity of PS synthase is maximal in the exponential phase, but decreases when cells enter the stationary phase. The enzyme is phosphorylated at a single serine residue by cyclic AMP-dependent protein kinase with a 60-70% decrease in enzymatic activity, but the primary translation product is not phosphorylated. PS synthase is inhibited by CTP, probably due to the chelation of the divalent cations, Mg2+ and Mn2+, and also by sphingoid bases, such as sphinganine and phytosphingosine. Phosphatidate, phosphatidylcholine and phosphatidylinositol are stimulatory, whereas cardiolipin and diacylglycerol are inhibitory. The expression of yeast PS synthase is transcriptionally repressed by myo-inositol and choline in a coordinate manner with other phospholipid-synthesizing enzymes. The upstream regulatory region of the PSS/CHO1 gene responsible for the myo-inositol-choline regulation was identified. An octameric sequence, CATRTGAA (R = A or G), plays an important role in the conferral of the myo-inositol-choline transcriptional regulation.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Clonación Molecular , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
15.
J Bacteriol ; 179(16): 4970-6, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9260935

RESUMEN

The Helicobacter pylori pss gene, coding for phosphatidylserine synthase (PSS), was cloned and sequenced in this study. A polypeptide of 237 amino acids was deduced from the PSS sequence. H. pylori PSS exhibits significant amino acid sequence identity with the PSS proteins found in the archaebacterium Methanococcus jannaschii, the gram-positive bacterium Bacillus subtilis, and the yeast Saccharomyces cerevisiae but none with its Escherichia coli counterpart. Expression of the putative pss gene in maxicells gave rise to a product of approximately 26 kDa, which is in agreement with the predicted molecular mass of 26,617 Da. A manganese-dependent PSS activity was found in the membrane fractions of the E. coli cells overexpressing the H. pylori pss gene product. This result indicates that this enzyme is a membrane-bound protein, a conclusion which is supported by the fact that the PSS protein contains several local hydrophobic segments which could form transmembrane helices. The pss gene was inactivated with a chloramphenicol acetyltransferase cassette on the plasmid. However, an isogenic pss gene-disrupted mutant of H. pylori UA802 could not be obtained, suggesting that this enzyme plays an essential role in the growth of this organism.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Genes Bacterianos , Helicobacter pylori/genética , Secuencia de Aminoácidos , Secuencia de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Membrana Celular/enzimología , Clonación Molecular , ADN Bacteriano/genética , Expresión Génica , Helicobacter pylori/enzimología , Datos de Secuencia Molecular , Mutagénesis Insercional , Alineación de Secuencia , Análisis de Secuencia de ADN
16.
Biosci Biotechnol Biochem ; 60(1): 111-6, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8824831

RESUMEN

The mechanism that assures the balanced synthesis of zwitterionic (phosphatidylethanolamine) and acidic phospholipids (phosphatidylglycerol and cardiolipin) in Escherichia coli has been examined by genetically manipulating the two enzymes at the biosynthetic branch point, i.e., phosphatidylglycerophosphate synthase, encoded by pgsA, and phosphatidylserine synthase, encoded by pssA. A mutant in which the most part of the pssA gene was replaced with a drug resistance gene lacked phosphatidylserine synthase and phosphatidylethanolamine and required divalent metal ions for growth, as did a previously reported insertion-inactivated pssA mutant. When this mutant harbored a plasmid containing a Bacillus subtilis gene that encodes membrane-bound phosphatidylserine synthase, the phosphatidylethanolamine content was dependent on its activity, in contrast to that with the soluble E. coli counterpart. A defective mutation, pgsA3, caused reductions not only in acidic-phospholipid synthesis but also in phosphatidylethanolamine synthesis, despite the normal level of phosphatidylserine synthase activity. These results, together with previous observations, indicate that phosphatidylserine synthesis requires the membrane-associated form of phosphatidylserine synthase, which is related to the membrane-levels of acidic phospholipids, thus yielding balanced compositions of zwitterionic and acidic phospholipids.


Asunto(s)
Cardiolipinas/biosíntesis , Escherichia coli/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidiletanolaminas/biosíntesis , Fosfatidilgliceroles/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Mutación/genética , Plásmidos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...