Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nat Commun ; 12(1): 2034, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795673

RESUMEN

COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera
2.
Nat Commun ; 12(1): 61, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397928

RESUMEN

Coat protein complex I (COP-I) mediates the retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER). Mutation of the COPA gene, encoding one of the COP-I subunits (α-COP), causes an immune dysregulatory disease known as COPA syndrome. The molecular mechanism by which the impaired retrograde transport results in autoinflammation remains poorly understood. Here we report that STING, an innate immunity protein, is a cargo of the retrograde membrane transport. In the presence of the disease-causative α-COP variants, STING cannot be retrieved back to the ER from the Golgi. The forced Golgi residency of STING results in the cGAS-independent and palmitoylation-dependent activation of the STING downstream signaling pathway. Surf4, a protein that circulates between the ER/ ER-Golgi intermediate compartment/ Golgi, binds STING and α-COP, and mediates the retrograde transport of STING to the ER. The STING/Surf4/α-COP complex is disrupted in the presence of the disease-causative α-COP variant. We also find that the STING ligand cGAMP impairs the formation of the STING/Surf4/α-COP complex. Our results suggest a homeostatic regulation of STING at the resting state by retrograde membrane traffic and provide insights into the pathogenesis of COPA syndrome.


Asunto(s)
Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Animales , Brefeldino A/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Células HEK293 , Humanos , Lipoilación , Luciferasas/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
3.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32406500

RESUMEN

Accurate maintenance of organelle identity in the secretory pathway relies on retention and retrieval of resident proteins. In the endoplasmic reticulum (ER), secretory proteins are packaged into COPII vesicles that largely exclude ER residents and misfolded proteins by mechanisms that remain unresolved. Here we combined biochemistry and genetics with correlative light and electron microscopy (CLEM) to explore how selectivity is achieved. Our data suggest that vesicle occupancy contributes to ER retention: in the absence of abundant cargo, nonspecific bulk flow increases. We demonstrate that ER leakage is influenced by vesicle size and cargo occupancy: overexpressing an inert cargo protein or reducing vesicle size restores sorting stringency. We propose that cargo recruitment into vesicles creates a crowded lumen that drives selectivity. Retention of ER residents thus derives in part from the biophysical process of cargo enrichment into a constrained spherical membrane-bound carrier.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Secretoras/genética , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Aparato de Golgi/genética , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Imagen Óptica , Transporte de Proteínas , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597778

RESUMEN

Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/virología , Células Epiteliales/virología , Proteínas Asociadas a Microtúbulos/genética , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas no Estructurales Virales/genética , Virión/genética , Animales , Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Calnexina/genética , Calnexina/metabolismo , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Membranas Intracelulares/virología , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Transporte de Proteínas , Rotavirus/crecimiento & desarrollo , Rotavirus/metabolismo , Rotavirus/ultraestructura , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Toxinas Biológicas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virión/crecimiento & desarrollo , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus/genética , Replicación Viral/genética
5.
Mol Biol Cell ; 30(3): 387-399, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485159

RESUMEN

COPII-coated vesicles are the primary mediators of ER-to-Golgi trafficking. Sar1, one of the five core COPII components, is a highly conserved small GTPase, which, upon GTP binding, recruits the other COPII proteins to the ER membrane. It has been hypothesized that the changes in the kinetics of SAR1 GTPase may allow for the secretion of large cargoes. Here we developed a cell-free assay to recapitulate COPII-dependent budding of large lipoprotein cargoes from the ER. We identified fatty-acid binding protein 5 (FABP5) as an enhancer of this budding process. We found that FABP5 promotes the budding of particles ∼150 nm in diameter and modulates the kinetics of the SAR1 GTPase cycle. We further found that FABP5 enhances the trafficking of lipoproteins and of other cargoes, including collagen. These data identify a novel regulator of SAR1 GTPase activity and highlight the importance of this activity for trafficking of large cargoes.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Apolipoproteínas B/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Línea Celular Tumoral , Colágeno/metabolismo , Células HeLa , Humanos , Cinética , Lipoproteínas VLDL/metabolismo , Modelos Biológicos , Unión Proteica , Ratas
6.
Nat Commun ; 9(1): 4154, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297805

RESUMEN

Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13-Sec31) bridges inner coat subunits (Sar1-Sec23-Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/química , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas de Transporte de Membrana/genética , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera
7.
PLoS Biol ; 16(8): e2005140, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086131

RESUMEN

Some secreted proteins that assemble into large complexes, such as extracellular matrices or hormones and enzymes in storage granules, must be kept at subaggregation concentrations during intracellular trafficking. We show surfeit locus protein 4 (Surf4) is the cargo receptor that establishes different steady-state concentrations for a variety of soluble cargo proteins within the endoplasmic reticulum (ER) through interaction with the amino-terminal tripeptides exposed after removal of leader sequences. We call this motif the ER-Exit by Soluble Cargo using Amino-terminal Peptide-Encoding motif (ER-ESCAPE motif). Proteins that most readily aggregate in the ER lumen (e.g., dentin sialophosphoprotein [DSPP] and amelogenin, X-linked [AMELX]) have strong ER-ESCAPE motifs to inhibit aggregate formation, while less susceptible cargo exhibits weaker motifs. Specific changes in a single amino acid of the tripeptide result in aggregate formation and failure to efficiently traffic cargo out of the ER. A logical subset of 8,000 possible tripeptides starting a model soluble cargo protein (growth hormone) established a continuum of steady-state ER concentrations ranging from low (i.e., high affinity for receptor) to the highest concentrations associated with bulk flow-limited trafficking observed for nonbinding motifs. Human cells lacking Surf4 no longer preferentially trafficked cargo expressing strong ER-ESCAPE motifs. Reexpression of Surf4 or expression of yeast's ortholog, ER-derived vesicles protein 29 (Erv29p), rescued enhanced ER trafficking in Surf4-null cells. Hence our work describes a new way of preferentially exporting soluble cargo out of the ER that maintains proteins below the concentrations at which they form damaging aggregates.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Oligopéptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Secuencias de Aminoácidos , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Retículo Endoplásmico/ultraestructura , Regulación de la Expresión Génica , Prueba de Complementación Genética , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo
8.
J Cell Sci ; 131(5)2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535154

RESUMEN

The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/genética , Proteína Coat de Complejo I/genética , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Proteína Coat de Complejo I/ultraestructura , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Humanos , Transporte de Proteínas/genética
9.
J Cell Biol ; 216(12): 4153-4164, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29133483

RESUMEN

Proinsulin is synthesized in the endoplasmic reticulum (ER) in pancreatic ß cells and transported to the Golgi apparatus for proper processing and secretion into plasma. Defects in insulin biogenesis may cause diabetes. However, the underlying mechanisms for proinsulin transport are still not fully understood. We show that ß cell-specific deletion of cTAGE5, also known as Mea6, leads to increased ER stress, reduced insulin biogenesis in the pancreas, and severe glucose intolerance in mice. We reveal that cTAGE5/MEA6 interacts with vesicle membrane soluble N-ethyl-maleimide sensitive factor attachment protein receptor Sec22b. Sec22b and its interaction with cTAGE5/MEA6 are essential for proinsulin processing. cTAGE5/MEA6 may coordinate with Sec22b to control the release of COPII vesicles from the ER, and thereby the ER-to-Golgi trafficking of proinsulin. Importantly, transgenic expression of human cTAGE5/MEA6 in ß cells can rescue not only the defect in islet structure, but also dysfunctional insulin biogenesis and glucose intolerance on cTAGE5/Mea6 conditional knockout background. Together our data provide more insight into the underlying mechanism of the proinsulin trafficking pathway.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas R-SNARE/metabolismo , Animales , Antígenos de Neoplasias/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Eliminación de Gen , Regulación de la Expresión Génica , Prueba de Complementación Genética , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Células Secretoras de Insulina/citología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proinsulina/biosíntesis , Transporte de Proteínas , Proteínas R-SNARE/genética
10.
Methods Mol Biol ; 1662: 75-86, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861818

RESUMEN

In plant secretory pathways, the Golgi apparatus serves as the major sorting hub to receive de novo synthesized protein from the endoplasmic reticulum for further sorting to post-Golgi compartments or for residence in the cisternae of Golgi stacks. Meanwhile, Golgi functions as a pivotal biochemical factory to make modifications of N-glycans and to produce mature glycoproteins. Fluorescent tag-based confocal microscopy in combination with the brefeldin A drug or the genetic tools to disturb Golgi function have been shown as powerful approaches to analyze Golgi-mediated protein traffic in transiently expressed plant protoplasts or in stably expressed transgenic plants. Various endoglycosidases like Endo H and PNGase F have been widely used to monitor Golgi-mediated glycosylation of secretory proteins. Here, using fluorescently tagged Golgi-resident proteins and known glycosylated proteins as examples, we describe detailed protocols to analyze Golgi-mediated protein traffic and glycosylation in transiently expressed protoplasts derived from Arabidopsis suspension culture cells and in stably expressed transgenic plants.


Asunto(s)
Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Microscopía Fluorescente/métodos , Células Vegetales/metabolismo , Protoplastos/metabolismo , Vías Secretoras/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Brefeldino A/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Células Cultivadas , Dexametasona/farmacología , Electroporación/métodos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/ultraestructura , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Células Vegetales/efectos de los fármacos , Células Vegetales/ultraestructura , Plantas Modificadas Genéticamente , Plásmidos/química , Plásmidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Protoplastos/efectos de los fármacos , Protoplastos/ultraestructura , Vías Secretoras/efectos de los fármacos , Transfección/métodos
11.
BMC Cell Biol ; 18(1): 22, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28486929

RESUMEN

BACKGROUND: Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed. RESULTS: In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation. CONCLUSION: These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Unión Proteica/fisiología , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/genética
12.
J Cell Biol ; 216(6): 1745-1759, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28428367

RESUMEN

The coat protein complex II (COPII) is essential for the transport of large cargo, such as 300-nm procollagen I (PC1) molecules, from the endoplasmic reticulum (ER) to the Golgi. Previous work has shown that the CUL3-KLHL12 complex increases the size of COPII vesicles at ER exit sites to more than 300 nm in diameter and accelerates the secretion of PC1. However, the role of large COPII vesicles as PC1 transport carriers was not unambiguously demonstrated. In this study, using stochastic optical reconstruction microscopy, correlated light electron microscopy, and live-cell imaging, we demonstrate the existence of mobile COPII-coated vesicles that completely encapsulate the cargo PC1 and are physically separated from ER. We also developed a cell-free COPII vesicle budding reaction that reconstitutes the capture of PC1 into large COPII vesicles. This process requires COPII proteins and the GTPase activity of the COPII subunit SAR1. We conclude that large COPII vesicles are bona fide carriers of PC1.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coatómero/metabolismo , Colágeno Tipo I/metabolismo , Cuerpos Multivesiculares/metabolismo , Procolágeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Línea Celular Tumoral , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Microscopía por Video , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Cuerpos Multivesiculares/ultraestructura , Procolágeno/genética , Transporte de Proteínas , Factores de Tiempo , Transfección
13.
Annu Rev Biochem ; 86: 225-244, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301741

RESUMEN

Autophagy is the process of cellular self-eating by a double-membrane organelle, the autophagosome. A range of signaling processes converge on two protein complexes to initiate autophagy: the ULK1 (unc51-like autophagy activating kinase 1) protein kinase complex and the PI3KC3-C1 (class III phosphatidylinositol 3-kinase complex I) lipid kinase complex. Some 90% of the mass of these large protein complexes consists of noncatalytic domains and subunits, and the ULK1 complex has essential noncatalytic activities. Structural studies of these complexes have shed increasing light on the regulation of their catalytic and noncatalytic activities in autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the integral membrane protein Atg9 (autophagy-related 9), COPII (coat protein complex II) vesicles, and possibly other sources. In the wake of reconstitution and super-resolution imaging studies, we are beginning to understand how the ULK1 and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII vesicles at the start of autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Fagosomas/ultraestructura , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Unión Proteica , Multimerización de Proteína , Transducción de Señal
14.
Cell ; 166(4): 1028-1040, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27397506

RESUMEN

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.


Asunto(s)
Técnicas Citológicas/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Animales , Bacteriófagos/ultraestructura , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Técnicas Citológicas/instrumentación , Aparato de Golgi/ultraestructura , Masculino , Ratones , Microscopía Fluorescente/instrumentación , Imagen Individual de Molécula/instrumentación , Espermatocitos/ultraestructura , Complejo Sinaptonémico/ultraestructura
15.
Cell Rep ; 14(7): 1710-1722, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876173

RESUMEN

The de novo formation of autophagosomes for the targeting of cytosolic material to the vacuole/lysosome is upregulated upon starvation. How autophagosomes acquire membranes remains still unclear. Here, we report that, in yeast, the endoplasmic reticulum (ER)-localized Qa/t-SNARE Ufe1 has a role in autophagy. During starvation, Ufe1 is increasingly exported from the ER and targeted to intracellular sites that contain the autophagy markers Atg8 and Atg9. In addition, Ufe1 interacts with non-ER SNARE proteins implicated in autophagosome formation. Loss of Ufe1 function impairs autophagy and results in fewer and smaller autophagosomes. Unlike conventional cargo, the ER export of Ufe1 is significantly reduced in sec23-1 cells, which affects the coat protein (COP)II complex, already at the permissive temperature. Under the same conditions, sec23-1 cells are hypersensitive to starvation and deficient in autophagy. Our data suggest that ER membranes containing Ufe1 are delivered to sites of autophagosome formation in specific COPII vesicles.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Biogénesis de Organelos , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Medios de Cultivo/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nitrógeno/deficiencia , Fagosomas/efectos de los fármacos , Fagosomas/ultraestructura , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
16.
J Biol Chem ; 291(3): 1014-27, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546679

RESUMEN

The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(ß,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Sustitución de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/ultraestructura , Inhibidores Enzimáticos/farmacología , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Guanilil Imidodifosfato/farmacología , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Microscopía de Fuerza Atómica , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Forma de los Orgánulos/efectos de los fármacos , Interferencia de ARN , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
17.
Curr Opin Cell Biol ; 29: 67-73, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24840894

RESUMEN

Distinct trafficking pathways within the secretory and endocytic systems ensure prompt and precise delivery of specific cargo molecules to different cellular compartments via small vesicular (50-150nm) and tubular carriers. The COPI vesicular coat is required for retrograde trafficking from the cis-Golgi back to the ER and within the Golgi stack. Recent structural data have been obtained from X-ray crystallographic studies on COPI coat components alone and on COPI subunits in complex with either cargo motifs or Arf1, and from reconstructions of COPI coated vesicles by electron tomography. These studies provide important molecular information and indicate key differences in COPI coat assembly as compared with clathrin-based and COPII-based coats.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/metabolismo , Animales , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Dipéptidos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica
18.
Methods Cell Biol ; 118: 3-14, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24295297

RESUMEN

In vitro reconstitution is prerequisite to investigate complex cellular functions at the molecular level. Reconstitution systems range from combining complete cellular cytosol with organelle-enriched membrane fractions to liposomal systems where all components are chemically defined and can be chosen at will. Here, we describe the in vitro reconstitution of COPI-coated vesicles from semi-intact cells. Efficient vesicle formation is achieved by simple incubation of permeabilized cells with the minimal set of coat proteins Arf1 and coatomer, and guanosine trinucleotides. GTP hydrolysis or any mechanical manipulations are not required for efficient COPI vesicle release.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Aparato de Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Animales , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Proteína Coatómero/fisiología , Aparato de Golgi/ultraestructura , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Ratones , Conejos , Células Sf9
19.
Elife ; 2: e01296, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24137546

RESUMEN

A core prediction of the vesicular transport model is that COPI vesicles are responsible for trafficking anterograde cargoes forward. In this study, we test this prediction by examining the properties and requirements of inter-Golgi transport within fused cells, which requires mobile carriers in order for exchange of constituents to occur. We report that both small soluble and membrane-bound secretory cargo and exogenous Golgi resident glycosyl-transferases are exchanged between separated Golgi. Large soluble aggregates, which traverse individual stacks, do not transfer between Golgi, implying that small cargoes (which can fit in a typical transport vesicle) are transported by a different mechanism. Super-resolution microscopy reveals that the carriers of both anterograde and retrograde cargoes are the size of COPI vesicles, contain coatomer, and functionally require ARF1 and coatomer for transport. The data suggest that COPI vesicles traffic both small secretory cargo and steady-state Golgi resident enzymes among stacked cisternae that are stationary. DOI:http://dx.doi.org/10.7554/eLife.01296.001.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coatómero/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Subunidades de Proteína/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Transporte Biológico , Células CHO , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Fusión Celular , Proteína Coatómero/química , Cricetulus , Retículo Endoplásmico/ultraestructura , Glicosiltransferasas/metabolismo , Aparato de Golgi/ultraestructura , Células HeLa , Humanos , Microscopía Confocal , Subunidades de Proteína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...