Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 98
1.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747914

BACKGROUND: Nucleic acid amplification testing is the gold standard for SARS-CoV-2 diagnostics, although it may produce a certain number of false positive results. There has not been much published about the characteristics of false positive results. In this study, based on retesting, specimens that initially tested positive for SARS-CoV-2 were classified as true or false positive groups to characterize the distribution of cycle threshold (CT) values for N1 and N2 targets and number of targets detected for each group. METHODS: Specimens that were positive for N-gene on retesting and accompanied with S-gene were identified as true positives (true positive based on retesting, rTP), while specimens that retested negative were classified as false positives (false positive based on retesting, rFP). RESULTS: Of the specimens retested, 85/127 (66.9%) were rFP, 16/47 (34.0%) specimens with both N1 and N2 targets initially detected were rFP, and the CT values for each target was higher in rFP than in rTP. ROC curve analysis showed that optimal cutoff values of CT to differentiate between rTP and rFP were 34.8 for N1 and 33.0 for N2. With the optimal cutoff values of CT for each target, out of the 24 specimens that were positive for both N1 and N2 targets and classified as rTP, 23 (95.8%) were correctly identified as true positives. rFP specimens had a single N1 target in 52/61 (85.2%) and a single N2 target in 17/19 (89.5%). Notably, no true positive results were obtained from any specimens with only N2 target detected. CONCLUSIONS: These results suggest that retesting should be performed for positive results with a CT value greater than optimal cutoff value for each target or with a single N1 target amplified, considering the possibility of a false positive. This may provide guidance on indications to perform retesting to minimize the number of false positives.


COVID-19 Nucleic Acid Testing , COVID-19 , SARS-CoV-2 , Humans , False Positive Reactions , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , ROC Curve , Spike Glycoprotein, Coronavirus/genetics , Sensitivity and Specificity , Coronavirus Nucleocapsid Proteins/genetics , RNA, Viral/genetics , RNA, Viral/analysis
2.
East Mediterr Health J ; 30(4): 300-303, 2024 May 14.
Article En | MEDLINE | ID: mdl-38808406

Background: Early and accurate diagnosis is crucial for preventing the spread of SARS-CoV-2 infection. The rapid antigen test was developed for testing infection, and it was necessary to assess its performance before widespread use in Tunisia. Aim: To evaluate the effectiveness of a rapid antigen test for the detection of SARS-CoV-2 in nasopharyngeal swabs in Tunisia. Methods: Nasopharyngeal samples were taken from COVID-19 suspected cases between October and December 2020 and tested using the Standard Q COVID-19 Ag test (SD-Biosensor, Republic of Korea) and real-time reverse transcription polymerase chain reaction (RT­PCR). Results: Overall, 4539 patients were tested. Of the total study population (N = 4539), 82.5% of positive samples remained positive with the rapid antigen test, while 20.2% (470/2321) of samples that were negative with rapid antigen test were confirmed positive with RT-PCR, giving a negative predictive value of 79.8% for the rapid antigen test. The sensitivity and negative predictive value of the rapid antigen test were 70.2% and 65.8%, respectively. These results improved to 96.4% and 92.8%, respectively, when considering the cycle threshold value by RT-PCR below 25. Conclusion: Although the rapid antigen test was less sensitive than RT-PCR, its ability to rapidly detect individuals with high viral loads makes it suitable for use during an epidemic.


COVID-19 Serological Testing , COVID-19 , COVID-19/diagnosis , Reproducibility of Results , SARS-CoV-2 , COVID-19 Serological Testing/standards , Nasopharynx/virology , Tunisia , COVID-19 Nucleic Acid Testing/standards , Sensitivity and Specificity , Predictive Value of Tests , Humans
3.
Diagn Microbiol Infect Dis ; 109(2): 116287, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574444

BACKGROUND: The study aimed to construct a standardized quality control management procedure (QCMP) and access its accuracy in the quality control of COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR). METHODS: Considering the initial RT-PCR results without applying QCMP as the gold standard, a large-scale diagnostic accuracy study including 4,385,925 participants at three COVID-19 RT-PCR testing sites in China, Foshan (as a pilot test), Guangzhou and Shenyang (as validation sites), was conducted from May 21, 2021, to December 15, 2022. RESULTS: In the pilot test, the RT-PCR with QCMP had a high accuracy of 99.18% with 100% specificity, 100% positive predictive value (PPV), and 99.17% negative predictive value (NPV). The rate of retesting was reduced from 1.98% to 1.16%. Its accuracy was then consistently validated in Guangzhou and Shenyang. CONCLUSIONS: The RT-PCR with QCMP showed excellent accuracy in identifying true negative COVID-19 and relieved the labor and time spent on retesting.


COVID-19 , Quality Control , SARS-CoV-2 , Sensitivity and Specificity , Humans , China , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Pilot Projects
4.
J Infect Chemother ; 30(7): 633-641, 2024 Jul.
Article En | MEDLINE | ID: mdl-38325625

INTRODUCTION: Nucleic acid amplification tests (NAATs) play a pivotal role in clinical laboratories for diagnosing COVID-19. This study aimed to elucidate the accuracy of these tests. METHODS: In 2021, an external quality assessment of NAATs for SARS-CoV-2 was conducted in 47 laboratories in Tokyo, Japan. In open testing, where the laboratories knew that the samples were intended for the survey, a simulated nasopharyngeal swab suspension sample was used, featuring a positive sample A with a viral concentration of 50 copies/µL, positive sample B with 5 copies/µL, and a negative sample. Laboratories employing real-time RT-PCR were required to report cycle threshold (Ct) values. In blind testing, where the samples were processed as normal test samples, a positive sample C with 50 copies/µL was prepared using a simulated saliva sample. RESULTS: Of the 47 laboratories, 41 were engaged in open testing. For sample A, all 41 laboratories yielded positive results, whereas for sample B, 36 laboratories reported positive results, 3 laboratories reported "test decision pending", 1 laboratory reported "suspected positive", and 1 laboratory did not respond. All 41 laboratories correctly identified the negative samples as negative. The mean Ct values were 32.2 for sample A and 35.2 for sample B. In the blind test, six laboratories received samples. Sample C was identified as positive by five laboratories and negative by one laboratory. CONCLUSIONS: The nature of the specimen, specifically the saliva, may have influenced the blind test outcomes. The identified issues must be meticulously investigated and rectified to ensure accurate results.


COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Tokyo , COVID-19/diagnosis , COVID-19/virology , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , Laboratories, Clinical , Sensitivity and Specificity , Surveys and Questionnaires
5.
Viruses ; 14(2)2022 02 02.
Article En | MEDLINE | ID: mdl-35215902

Efficient, wide-scale testing for SARS-CoV-2 is crucial for monitoring the incidence of the infection in the community. The gold standard for COVID-19 diagnosis is the molecular analysis of epithelial secretions from the upper respiratory system captured by nasopharyngeal (NP) or oropharyngeal swabs. Given the ease of collection, saliva has been proposed as a possible substitute to support testing at the population level. Here, we used a novel saliva collection device designed to favour the safe and correct acquisition of the sample, as well as the processivity of the downstream molecular analysis. We tested 1003 nasopharyngeal swabs and paired saliva samples self-collected by individuals recruited at a public drive-through testing facility. An overall moderate concordance (68%) between the two tests was found, with evidence that neither system can diagnose the infection in 100% of the cases. While the two methods performed equally well in symptomatic individuals, their discordance was mainly restricted to samples from convalescent subjects. The saliva test was at least as effective as NP swabs in asymptomatic individuals recruited for contact tracing. Our study describes a testing strategy of self-collected saliva samples, which is reliable for wide-scale COVID-19 screening in the community and is particularly effective for contact tracing.


COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Saliva/virology , COVID-19/diagnosis , COVID-19/virology , Female , Humans , Male , Mass Screening , Nasopharynx/virology , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/methods
6.
PLoS One ; 17(1): e0262733, 2022.
Article En | MEDLINE | ID: mdl-35061822

This study aims at establishing specimens pooling approach for the detection of SARS-CoV-2 using the RT-PCR BGI and Sansure-Biotech kits used in Gabon. To validate this approach, 14 positive samples, stored at -20°C for three to five weeks were analyzed individually (as gold standard) and in pools of five, eight and ten in the same plate. We created 14 pools of 5, 8 and 10 samples using 40 µL from each of the selected positive samples mixed with 4, 7 and 9 confirmed negative counterparts in a total volume of 200 µL, 320 µL and 400 µL for the pools of 5, 8 and 10 respectively. Both individual and pooled samples testing was conducted according to the BGI and Sansure-Biotech RT-PCR protocols used at the Professor Daniel Gahouma Laboratory (PDGL). Furthermore, the pooling method was also tested by comparing results of 470 unselected samples tested in 94 pools and individually. Results of our experiment showed that using a BGI single positive sample with cycle threshold (Ct) value of 28.42, confirmed by individual testing, detection occurred in all the pools. On the contrary samples with Ct >31 were not detected in pools of 10 and for these samples (Ct value as high as 37.17) their detection was possible in pool of 8. Regarding the Sansure-Biotech kit, positive samples were detected in all the pool sizes tested, irrespective of their Ct values. The specificity of the pooling method was 100% for the BGI and Sansure-Biotech RT-PCR assays. The present study found an increase in the Ct values with pool size for the BGI and Sansure-Biotech assays. This trend was statistically significant (Pearson's r = 0.978; p = 0,022) using the BGI method where the mean Ct values were 24.04±1.1, 26.74±1.3, 27.91±1.1 and 28.32±1.1 for the individual, pool of 5, 8 and 10 respectively. The testing of the 470 samples showed that one of the 94 pools had a positive test similar to the individual test using the BGI and Sansure-Biotech kits. The saving of time and economizing test reagents by using the pooling method were demonstrated in this study. Ultimately, the pooling method could be used for the diagnosis of SARS-CoV-2 without modifying the accuracy of results in Gabon. We recommend a maximum pool size of 8 for the BGI kit. For the Sansure-Biotech kit, a maximum pool size of 10 can be used without affecting its accuracy compared to the individual testing.


COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Specimen Handling/methods , COVID-19/epidemiology , Gabon/epidemiology , Health Services , Humans , Reagent Kits, Diagnostic/standards , SARS-CoV-2/classification , Sensitivity and Specificity
7.
PLoS One ; 17(1): e0263114, 2022.
Article En | MEDLINE | ID: mdl-35077513

In many countries a second wave of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred, triggering a shortage of reagents needed for diagnosis and compromising the capacity of laboratory testing. There is an urgent need to develop methods to accelerate the diagnostic procedures. Pooling samples represents a strategy to overcome the shortage of reagents, since several samples can be tested using one reaction, significantly increasing the number and speed with which tests can be carried out. We have reported the feasibility to use a direct lysis procedure of saliva as source for RNA to SARS-CoV-2 genome detection by reverse transcription quantitative-PCR (RT-qPCR). Here, we show that the direct lysis of saliva pools, of either five or ten samples, does not compromise the detection of viral RNA. In addition, it is a sensitive, fast, and inexpensive method that can be used for massive screening, especially considering the proximity of the reincorporation of activities in universities, offices, and schools.


COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Saliva/virology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing/standards , Humans , Mass Screening/methods , Mass Screening/standards , Quarantine/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
8.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article En | MEDLINE | ID: mdl-34958396

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
9.
PLoS One ; 16(11): e0260087, 2021.
Article En | MEDLINE | ID: mdl-34807915

The emergence of the COVID-19 pandemic resulted in an unprecedented need for RT-qPCR-based molecular diagnostic testing, placing a strain on the supply chain and the availability of commercially available PCR testing kits and reagents. The effect of limited molecular diagnostics-related supplies has been felt across the globe, disproportionally impacting molecular diagnostic testing in developing countries where acquisition of supplies is limited due to availability. The increasing global demand for commercial molecular diagnostic testing kits and reagents has made standard PCR assays cost prohibitive, resulting in the development of alternative approaches to detect SARS-CoV-2 in clinical specimens, circumventing the need for commercial diagnostic testing kits while mitigating the high-demand for molecular diagnostics testing. The timely availability of the complete SARS-CoV-2 genome in the beginning of the COVID-19 pandemic facilitated the rapid development and deployment of specific primers and standardized laboratory protocols for the molecular diagnosis of COVID-19. An alternative method offering a highly specific manner of detecting and genotyping pathogens within clinical specimens is based on the melting temperature differences of PCR products. This method is based on the melting temperature differences between purine and pyrimidine bases. Here, RT-qPCR assays coupled with a High Resolution Melting analysis (HRM-RTqPCR) were developed to target different regions of the SARS-CoV-2 genome (RdRp, E and N) and an internal control (human RNAse P gene). The assays were validated using synthetic sequences from the viral genome and clinical specimens (nasopharyngeal swabs, serum and saliva) of sixty-five patients with severe or moderate COVID-19 from different states within Brazil; a larger validation group than that used in the development to the commercially available TaqMan RT-qPCR assay which is considered the gold standard for COVID-19 testing. The sensitivity of the HRM-RTqPCR assays targeting the viral N, RdRp and E genes were 94.12, 98.04 and 92.16%, with 100% specificity to the 3 SARS-CoV-2 genome targets, and a diagnostic accuracy of 95.38, 98.46 and 93.85%, respectively. Thus, HRM-RTqPCR emerges as an attractive alternative and low-cost methodology for the molecular diagnosis of COVID-19 in restricted-budget laboratories.


COVID-19 Nucleic Acid Testing/methods , Real-Time Polymerase Chain Reaction/methods , Adult , COVID-19 Nucleic Acid Testing/standards , Female , Humans , Male , Nucleic Acid Denaturation , Oligonucleotides/chemistry , Real-Time Polymerase Chain Reaction/standards , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Saliva/virology , Sensitivity and Specificity
10.
Medicine (Baltimore) ; 100(41): e27478, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34731126

ABSTRACT: The COVID-19 pandemic has challenged institutions' diagnostic processes worldwide. The aim of this study was to assess the feasibility of an artificial intelligence (AI)-based software tool that automatically evaluates chest computed tomography for findings of suspected COVID-19.Two groups were retrospectively evaluated for COVID-19-associated ground glass opacities of the lungs (group A: real-time polymerase chain reaction positive COVID patients, n = 108; group B: asymptomatic pre-operative group, n = 88). The performance of an AI-based software assessment tool for detection of COVID-associated abnormalities was compared with human evaluation based on COVID-19 reporting and data system (CO-RADS) scores performed by 3 readers.All evaluated variables of the AI-based assessment showed significant differences between the 2 groups (P < .01). The inter-reader reliability of CO-RADS scoring was 0.87. The CO-RADS scores were substantially higher in group A (mean 4.28) than group B (mean 1.50). The difference between CO-RADS scoring and AI assessment was statistically significant for all variables but showed good correlation with the clinical context of the CO-RADS score. AI allowed to predict COVID positive cases with an accuracy of 0.94.The evaluated AI-based algorithm detects COVID-19-associated findings with high sensitivity and may support radiologic workflows during the pandemic.


Artificial Intelligence/standards , COVID-19/diagnosis , Lung/diagnostic imaging , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/standards , Feasibility Studies , Female , Humans , Lung/pathology , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
11.
Mayo Clin Proc ; 96(11): 2856-2860, 2021 11.
Article En | MEDLINE | ID: mdl-34736612

Although there have been several case reports and simulation models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission associated with air travel, there are limited data to guide testing strategy to minimize the risk of SARS-CoV-2 exposure and transmission onboard commercial aircraft. Among 9853 passengers with a negative SARS-CoV-2 polymerase chain reaction test performed within 72 hours of departure from December 2020 through May 2021, five (0.05%) passengers with active SARS-CoV-2 infection were identified with rapid antigen tests and confirmed with rapid molecular test performed before and after an international flight from the United States to Italy. This translates to a case detection rate of 1 per 1970 travelers during a time of high prevalence of active infection in the United States. A negative molecular test for SARS-CoV-2 within 72 hours of international airline departure results in a low probability of active infection identified on antigen testing during commercial airline flight.


Air Travel , COVID-19 Testing/standards , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19 Nucleic Acid Testing/standards , Humans , Italy , Risk Assessment , United States
12.
Nat Commun ; 12(1): 5753, 2021 10 01.
Article En | MEDLINE | ID: mdl-34599164

Patients with COVID-19 shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. This may be significant for patient health, epidemiology, and diagnosis. However, methods to preserve stool, and to extract and quantify viral RNA are not standardized. We test the performance of three preservative approaches at yielding detectable SARS-CoV-2 RNA: the OMNIgene-GUT kit, Zymo DNA/RNA shield kit, and the most commonly applied, storage without preservative. We test these in combination with three extraction kits: QIAamp Viral RNA Mini Kit, Zymo Quick-RNA Viral Kit, and MagMAX Viral/Pathogen Kit. We also test the utility of ddPCR and RT-qPCR for the reliable quantification of SARS-CoV-2 RNA from stool. We identify that the Zymo DNA/RNA preservative and the QiaAMP extraction kit yield more detectable RNA than the others, using both ddPCR and RT-qPCR. Taken together, we recommend a comprehensive methodology for preservation, extraction and detection of RNA from SARS-CoV-2 and other coronaviruses in stool.


COVID-19 Nucleic Acid Testing/standards , Feces/virology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Humans , Phosphoproteins/genetics , Preservation, Biological/standards , RNA, Viral/analysis , RNA, Viral/genetics , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/genetics , Specimen Handling/standards , Viral Load/standards
13.
J Clin Lab Anal ; 35(11): e23998, 2021 Nov.
Article En | MEDLINE | ID: mdl-34599840

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19), is detected using real-time RT-PCR. However, there are limitations pertaining to quality control, particularly with respect to establishing quality control measures for extraction of viral nucleic acids. Here, we investigated the quality control measures for the various processes using an extrinsic quality control substance and quality control charts. METHODS: An extrinsic quality control substance was added to the sample, and then, real-time RT-PCR was performed. Samples with negative test results and the corresponding data were analyzed; a quality control chart was created and examined. RESULTS: Data analysis and the quality control charts indicated that SARS-CoV-2 could be reliably detected using real-time RT-PCR, even when different nucleic acid extraction methods were used or when different technicians were employed. CONCLUSION: With the use of quality control substances, it is possible to achieve quality control throughout the process-from nucleic acid extraction to nucleic acid detection-even upon using varying extraction methods. Further, generating quality control charts would guarantee the stable detection of SARS-CoV-2.


COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Nucleic Acids/isolation & purification , Quality Control , SARS-CoV-2/genetics , Humans , Retrospective Studies , SARS-CoV-2/isolation & purification
14.
Clin Chem ; 68(1): 153-162, 2021 12 30.
Article En | MEDLINE | ID: mdl-34633030

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA quantities, measured by reverse transcription quantitative PCR (RT-qPCR), have been proposed to stratify clinical risk or determine analytical performance targets. We investigated reproducibility and how setting diagnostic cutoffs altered the clinical sensitivity of coronavirus disease 2019 (COVID-19) testing. METHODS: Quantitative SARS-CoV-2 RNA distributions [quantification cycle (Cq) and copies/mL] from more than 6000 patients from 3 clinical laboratories in United Kingdom, Belgium, and the Republic of Korea were analyzed. Impact of Cq cutoffs on clinical sensitivity was assessed. The June/July 2020 INSTAND external quality assessment scheme SARS-CoV-2 materials were used to estimate laboratory reported copies/mL and to estimate the variation in copies/mL for a given Cq. RESULTS: When the WHO-suggested Cq cutoff of 25 was applied, the clinical sensitivity dropped to about 16%. Clinical sensitivity also dropped to about 27% when a simulated limit of detection of 106 copies/mL was applied. The interlaboratory variation for a given Cq value was >1000 fold in copies/mL (99% CI). CONCLUSION: While RT-qPCR has been instrumental in the response to COVID-19, we recommend Cq (cycle threshold or crossing point) values not be used to set clinical cutoffs or diagnostic performance targets due to poor interlaboratory reproducibility; calibrated copy-based units (used elsewhere in virology) offer more reproducible alternatives. We also report a phenomenon where diagnostic performance may change relative to the effective reproduction number. Our findings indicate that the disparities between patient populations across time are an important consideration when evaluating or deploying diagnostic tests. This is especially relevant to the emergency situation of an evolving pandemic.


COVID-19 Nucleic Acid Testing/standards , COVID-19 , Nucleic Acids , Belgium , COVID-19/diagnosis , Humans , Nucleic Acids/analysis , RNA, Viral/analysis , Reproducibility of Results , Republic of Korea , SARS-CoV-2 , Sensitivity and Specificity , United Kingdom
15.
PLoS One ; 16(9): e0257169, 2021.
Article En | MEDLINE | ID: mdl-34516569

A prospective study was conducted among different intra and extra-hospital populations of French Guiana to evaluate the performance of saliva testing compared to nasopharyngeal swabs. Persons aged 3 years and older with mild symptoms suggestive of COVID-19 and asymptomatic persons with a testing indication were prospectively enrolled. Nasopharyngeal and salivary samples were stored at 4°C before analysis. Both samples were analyzed with the same Real-time PCR amplification of E gene, N gene, and RdRp gene. Between July 22th and October 28th, 1159 persons were included, of which 1028 were analyzed. When only considering as positives those with 2 target genes with Ct values <35, the sensitivity of RT-PCR on saliva samples was 100% relative to nasopharyngeal samples. Specificity positive and negative predictive values were above 90%. Across a variety of cultures and socioeconomic conditions, saliva tests were generally much preferred to nasopharyngeal tests and persons seemed largely confident that they could self-sample. For positive patients defined as those with the amplification of 2 specific target genes with Ct values below 35, the sensitivity and specificity of RT-PCR on saliva samples was similar to nasopharyngeal samples despite the broad range of challenging circumstances in a tropical environment.


COVID-19 Nucleic Acid Testing/methods , Saliva/virology , Adolescent , Adult , Aged , COVID-19 Nucleic Acid Testing/standards , Child , Child, Preschool , Female , French Guiana , Hospitals/statistics & numerical data , Humans , Male , Middle Aged , Nasopharynx/virology , Patient Acceptance of Health Care , Sensitivity and Specificity , Tropical Climate
16.
Viruses ; 13(9)2021 08 28.
Article En | MEDLINE | ID: mdl-34578293

The SARS-CoV-2 pandemic has required the development of multiple testing systems to monitor and control the viral infection. Here, we developed a PCR test to screen COVID-19 infections that can process up to ~180 samples per day without the requirement of robotics. For this purpose, we implemented the use of multichannel pipettes and plate magnetics for the RNA extraction step and combined the reverse transcription with the qPCR within one step. We tested the performance of two RT-qPCR kits as well as different sampling buffers and showed that samples taken in NaCl or PBS are stable and compatible with different COVID-19 testing systems. Finally, we designed a new internal control based on the human RNase P gene that does not require a DNA digestion step. Our protocol is easy to handle and reaches the sensitivity and accuracy of the standardized diagnostic protocols used in the clinic to detect COVID-19 infections.


COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/virology , Polymerase Chain Reaction , SARS-CoV-2 , COVID-19 Nucleic Acid Testing/standards , Humans , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity , Viral Load
17.
J Infect Dev Ctries ; 15(7): 904-909, 2021 07 31.
Article En | MEDLINE | ID: mdl-34343113

INTRODUCTION: As regard to all pandemics, the current COVID-19 pandemic, could also have been better managed with prudent use of preventive measures coupled with rapid diagnostic tools such as rapid antigen tests, but their efficacy is under question because of projected lower sensitivity as compared to Real Time Reverse Transcriptase Polymerase Chain Reaction, which although considered gold standard has its own limitations. METHODOLOGY: A prospective, single centre study was carried out to evaluate the performance of Standard Q COVID-19 Ag, a rapid immuno-chromatographic assay for antigen detection, against TrueNat, a chip-based, point-of-care, portable, Real-Time PCR analyzer for diagnosis of COVID-19; on 467 nasal swab samples from suspected subjects at a fever clinic in North India in month of July 2020. RESULTS: Of the 467 specimens tested, TrueNat showed positive result in 29 (6.2%), majority of whom were asymptomatic (72.4%) while 4/29 (13.9%) had influenza like illness and 2/29 (6.8%) presented with severe acute respiratory illness. Compared to TrueNat, Rapid antigen test gave concordance for 26 samples, while for 2 samples the result was false positive; giving an overall sensitivity of 89.7% (95% CI = 72.6- 97.8) and a specificity of 99.5%, indicating strong agreement between two methods. CONCLUSION: Community prevalence plays an important role is choosing the laboratory test and result interpretation. Rapid antigen detection tests definitely have a big role to play, especially in resource limited setting, for early diagnosis as well as for source control to halt the spread.


COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19/diagnosis , Immunoassay/methods , Immunoassay/standards , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Viral , Asymptomatic Infections , COVID-19/blood , COVID-19 Nucleic Acid Testing/standards , COVID-19 Nucleic Acid Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , India , Male , Middle Aged , Nose/virology , Prospective Studies , SARS-CoV-2/chemistry , Sensitivity and Specificity , Young Adult
18.
J Infect Dev Ctries ; 15(7): 913-917, 2021 07 31.
Article En | MEDLINE | ID: mdl-34343115

Early diagnosis is among the crucial measures to control the spread of SARS-CoV-2 infection. To date, reverse transcription polymerase chain reaction (RT-PCR) is the gold standard for COVID-19 testing, but various factors can affect its performance leading to false negative results. Hereby we present a patient with a high clinical suspicion for COVID-19 and had multiple negative RT-PCR results over 5 days. A 22-year-old woman presented with fever, dry cough, nausea, myalgia, headache, and mild dyspnea. Eleven days before, she was in close contact with her father who had tested positive for COVID-19. RT-PCR on nasopharyngeal and oropharyngeal swabs were performed on day 8, 9, and 12 of illness which all came back negative even after she started having a worsening dyspnea and showing an increased lung opacity from radiographic findings on day 11 of illness. Interestingly, her rapid antibody test (VivaDiag™ COVID-19 IgM/IgG rapid test by VivaChek Biotech (HangZhou,China) was positive for anti-SARS-CoV-2 Ig M and Ig G. Due to the worsening condition, she was referred to a tertiary hospital where her RT PCR result was positive on day 13 of illness. After 28 days from her first symptom, she was discharged from the hospital with improved symptoms and chest X-ray. As conclusions, in patients with high suspicion of COVID-19, repeat swab tests are mandatory if previous tests were negative. The diagnosis and treatment plan of COVID-19 should not solely be based on RT-PCR, but also consider the patient's history, symptoms, laboratory result, and radiographic findings.


COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Antibodies, Viral/blood , COVID-19/virology , False Negative Reactions , Female , Humans , Immunoglobulin M/blood , Nasopharynx/virology , Sensitivity and Specificity , Specimen Handling , Time Factors , Young Adult
19.
Sci Rep ; 11(1): 16193, 2021 08 10.
Article En | MEDLINE | ID: mdl-34376716

We have optimised a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2 from extracted RNA for clinical application. We improved the stability and reliability of the RT-LAMP assay by the addition of a temperature-dependent switch oligonucleotide to reduce self- or off-target amplification. We then developed freeze-dried master mix for single step RT-LAMP reaction, simplifying the operation for end users and improving long-term storage and transportation. The assay can detect as low as 13 copies of SARS-CoV2 RNA per reaction (25-µL). Cross reactivity with other human coronaviruses was not observed. We have applied the new RT-LAMP assay for testing clinical extracted RNA samples extracted from swabs of 72 patients in the UK and 126 samples from Greece and demonstrated the overall sensitivity of 90.2% (95% CI 83.8-94.7%) and specificity of 92.4% (95% CI 83.2-97.5%). Among 115 positive samples which Ct values were less than 34, the RT-LAMP assay was able to detect 110 of them with 95.6% sensitivity. The specificity was 100% when RNA elution used RNase-free water. The outcome of RT-LAMP can be reported by both colorimetric detection and quantifiable fluorescent reading. Objective measures with a digitized reading data flow would allow for the sharing of results for local or national surveillance.


COVID-19 Nucleic Acid Testing/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19 Nucleic Acid Testing/standards , Humans , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Sensitivity and Specificity
20.
Mol Diagn Ther ; 25(5): 617-628, 2021 09.
Article En | MEDLINE | ID: mdl-34319580

BACKGROUND AND OBJECTIVE: Since the initial coronavirus disease outbreak in late 2019 (COVID-19), reverse-transcription real-time polymerase chain reaction (RT-qPCR) has become the gold standard test to detect severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). However, a more sensitive and accurate diagnostic tool was required. Therefore, droplet digital polymerase chain reaction (ddPCR) was suggested as an alternative method. Here, we evaluated the performance of ddPCR to detect SARS-CoV-2 and compared it to the performance of RT-qPCR. METHODS: The analytical performances, including limit of blank and limit of detection, were established using positive and negative SARS-CoV-2 reference materials. A total of 366 RNA extracts (173 positive and 193 negative by RT-qPCR) were collected from four institutions and tested with a Bio-Rad SARS-CoV-2 ddPCR kit that detects the SARS-CoV-2 genome using primers for N1 and N2. RESULTS: Limit of blank was set at 0, and the limits of detection of N1 and N2 were 1.99 copies/µL and 5.18 copies/µL, respectively. Linearity was evaluated using serial dilution samples, which demonstrated good results (R2: 0.999, linear range: 5.88-6825.25 copies/µL for N1 and R2: 0.999, 5.53-5855.47 copies/µL for N2). The results of ddPCR and RT-qPCR revealed substantial agreement (Cohen's kappa: 0.639, p < 0.01). The 63 samples with positive ddPCR but negative RT-qPCR showed low copy numbers, and 55% of them had COVID-19-related symptoms. CONCLUSIONS: Droplet digital polymerase chain reaction demonstrated excellent sensitivity for SARS-Cov-2 detection and consistently agreed with the results from conventional RT-qPCR. Furthermore, ddPCR provided quantitative data that can be used to monitor changes in the viral load of patients with COVID-19.


COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Calibration , Humans , Limit of Detection , Nasopharynx/virology , Reference Values
...