Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.447
Filtrar
1.
Nucleic Acids Res ; 52(15): 9076-9091, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188014

RESUMEN

The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Exorribonucleasas , Dominios Proteicos , Animales , Exorribonucleasas/metabolismo , Exorribonucleasas/química , Exorribonucleasas/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Humanos , Evolución Molecular , ARN/metabolismo , ARN/química , Secuencia de Aminoácidos , Unión Proteica
2.
PLoS Negl Trop Dis ; 18(8): e0012473, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213433

RESUMEN

BACKGROUND: Filarial nematodes cause severe illnesses in humans and canines including limb deformities and disfigurement, heart failure, blindness, and death, among others. There are no vaccines, and current drugs against filarial nematodes infections have only modest effects and are prone to complications. METHODOLOGY/PRINCIPAL FINDINGS: We identified a gene (herein called DiMT) encoding an S-adenosyl-L-methionine (SAM)-dependent methyltransferase with orthologs in parasite filarial worms but not in mammals. By in silico analysis, DiMT possesses catalytic sites for binding SAM and catecholamines with high affinity. We expressed and purified recombinant DiMT protein and used it as an enzyme in a series of SAM-dependent methylation assays. DiMT acted specifically as a catechol-O-methyltransferase (COMT), catalyzing catabolic methylation of dopamine, and depicted Michaelis Menten kinetics on substrate and co-substrate. Among a set of SAM-dependent methyltransferase inhibitors, we identified compounds that bound with high affinity to DiMT's catalytic sites and inhibited its enzymatic activity. By testing the efficacy of DiMT inhibitors against microfilariae of Dirofilaria immitis in culture, we identified three inhibitors with concentration- and time-dependent effect of killing D. immitis microfilariae. Importantly, RNAi silencing of a DiMT ortholog in Caenorhabditis elegans has been shown to be lethal, likely as a result of excessive accumulation of active catecholamines that inhibit worm locomotion, pharyngeal pumping and fecundity. CONCLUSIONS/SIGNIFICANCE: Together, we have unveiled DiMT as an essential COMT that is conserved in parasitic filarial nematodes, but is significantly different from mammalian COMTs and, therefore, is a viable target for development of novel drugs against filarial nematode infections.


Asunto(s)
Catecol O-Metiltransferasa , Animales , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Catecol O-Metiltransferasa/química , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/efectos de los fármacos , Inhibidores de Catecol O-Metiltransferasa/farmacología , Inhibidores Enzimáticos/farmacología , Perros
3.
Int J Parasitol Drugs Drug Resist ; 25: 100555, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996597

RESUMEN

Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.


Asunto(s)
Aldo-Ceto Reductasas , Haemonchus , Mebendazol , Filogenia , Animales , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Haemonchus/genética , Haemonchus/efectos de los fármacos , Haemonchus/enzimología , Mebendazol/farmacología , Mebendazol/análogos & derivados , Femenino , Masculino , Resistencia a Medicamentos/genética , Ovinos , Antihelmínticos/farmacología , Transcriptoma , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Bencimidazoles/farmacología
4.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38822747

RESUMEN

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Asunto(s)
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidasa , Escherichia coli , Ingeniería de Proteínas , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Ingeniería de Proteínas/métodos , Animales , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
5.
Nature ; 632(8024): 443-450, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925148

RESUMEN

Precursor-mRNA (pre-mRNA) splicing requires the assembly, remodelling and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodelling for catalysis2-6, but the mechanism of disassembly remains unclear. Here we report cryo-electron microscopy structures of nematode and human terminal intron lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 therefore controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of the initiation of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.


Asunto(s)
Caenorhabditis elegans , Empalmosomas , Animales , Humanos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Microscopía por Crioelectrón , Intrones/genética , Modelos Moleculares , ARN Helicasas/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/química , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Empalmosomas/química , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704027

RESUMEN

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Asunto(s)
Caenorhabditis elegans , Isoenzimas , Esfingolípidos , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Esfingolípidos/biosíntesis , Esfingolípidos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética , Espectrometría de Masas en Tándem , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Ceramidas/biosíntesis , Interferencia de ARN , Cromatografía Liquida
7.
Int J Parasitol ; 54(11): 535-549, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806068

RESUMEN

Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.


Asunto(s)
Antihelmínticos , Bencimidazoles , Caenorhabditis elegans , Glicosiltransferasas , Haemonchus , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/efectos de los fármacos , Bencimidazoles/farmacología , Bencimidazoles/metabolismo , Antihelmínticos/farmacología , Antihelmínticos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Haemonchus/genética , Haemonchus/efectos de los fármacos , Haemonchus/enzimología , Resistencia a Medicamentos/genética , Filogenia , Humanos , Mutación , Interferencia de ARN , Albendazol/farmacología
8.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602331

RESUMEN

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Asunto(s)
Antinematodos , Caenorhabditis elegans , Euphorbia , Látex , Proteína Quinasa C , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Látex/química , Látex/metabolismo , Antinematodos/farmacología , Antinematodos/química , Antinematodos/metabolismo , Euphorbia/química , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Cell Rep ; 43(5): 114138, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678555

RESUMEN

Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Inmunidad Innata , Lisosomas , ATPasas de Translocación de Protón Vacuolares , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Lisosomas/metabolismo , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38183989

RESUMEN

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Asunto(s)
Caenorhabditis elegans , Feromonas , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Feromonas/metabolismo , Feromonas/biosíntesis , Feromonas/química , Proteínas de Caenorhabditis elegans/metabolismo , Tioléster Hidrolasas/metabolismo
11.
Nature ; 622(7982): 402-409, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758951

RESUMEN

Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endorribonucleasas , ARN de Interacción con Piwi , Animales , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN/genética , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , ARN de Interacción con Piwi/química , ARN de Interacción con Piwi/genética , ARN de Interacción con Piwi/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo
12.
J Biol Chem ; 299(9): 105149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567477

RESUMEN

Alanyl-tRNA synthetase retains a conserved prototype structure throughout its biology. Nevertheless, its C-terminal domain (C-Ala) is highly diverged and has been shown to play a role in either tRNA or DNA binding. Interestingly, we discovered that Caenorhabditis elegans cytoplasmic C-Ala (Ce-C-Alac) robustly binds both ligands. How Ce-C-Alac targets its cognate tRNA and whether a similar feature is conserved in its mitochondrial counterpart remain elusive. We show that the N- and C-terminal subdomains of Ce-C-Alac are responsible for DNA and tRNA binding, respectively. Ce-C-Alac specifically recognized the conserved invariant base G18 in the D-loop of tRNAAla through a highly conserved lysine residue, K934. Despite bearing little resemblance to other C-Ala domains, C. elegans mitochondrial C-Ala robustly bound both tRNAAla and DNA and maintained targeting specificity for the D-loop of its cognate tRNA. This study uncovers the underlying mechanism of how C. elegans C-Ala specifically targets the D-loop of tRNAAla.


Asunto(s)
Alanina-ARNt Ligasa , Caenorhabditis elegans , Motivos de Nucleótidos , ARN de Transferencia de Alanina , Animales , Alanina-ARNt Ligasa/química , Alanina-ARNt Ligasa/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Secuencia Conservada , Citoplasma/enzimología , ADN/química , ADN/metabolismo , Ligandos , Lisina/metabolismo , Mitocondrias/enzimología , Dominios Proteicos , ARN de Transferencia de Alanina/química , ARN de Transferencia de Alanina/metabolismo , Especificidad por Sustrato , Conformación de Ácido Nucleico
13.
Nucleic Acids Res ; 51(5): 2434-2446, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36794723

RESUMEN

In Caenorhabditis elegans, the N6-methyladenosine (m6A) modification by METT10, at the 3'-splice sites in S-adenosyl-l-methionine (SAM) synthetase (sams) precursor mRNA (pre-mRNA), inhibits sams pre-mRNA splicing, promotes alternative splicing coupled with nonsense-mediated decay of the pre-mRNAs, and thereby maintains the cellular SAM level. Here, we present structural and functional analyses of C. elegans METT10. The structure of the N-terminal methyltransferase domain of METT10 is homologous to that of human METTL16, which installs the m6A modification in the 3'-UTR hairpins of methionine adenosyltransferase (MAT2A) pre-mRNA and regulates the MAT2A pre-mRNA splicing/stability and SAM homeostasis. Our biochemical analysis suggested that C. elegans METT10 recognizes the specific structural features of RNA surrounding the 3'-splice sites of sams pre-mRNAs, and shares a similar substrate RNA recognition mechanism with human METTL16. C. elegans METT10 also possesses a previously unrecognized functional C-terminal RNA-binding domain, kinase associated 1 (KA-1), which corresponds to the vertebrate-conserved region (VCR) of human METTL16. As in human METTL16, the KA-1 domain of C. elegans METT10 facilitates the m6A modification of the 3'-splice sites of sams pre-mRNAs. These results suggest the well-conserved mechanisms for the m6A modification of substrate RNAs between Homo sapiens and C. elegans, despite their different regulation mechanisms for SAM homeostasis.


Asunto(s)
Caenorhabditis elegans , Metiltransferasas , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Homeostasis/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Metiltransferasas/química , Precursores del ARN
14.
J Cell Biol ; 221(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36121422

RESUMEN

How cells spatially organize their plasma membrane, cytoskeleton, and cytoplasm remains a central question for cell biologists. In this issue of JCB, Calvi et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202201048) identify PP1 phosphatases as key regulators of C. elegans anterior-posterior polarity, by counterbalancing aPKC-mediated phosphorylation of PAR-2.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridad Celular , Fosfoproteínas Fosfatasas , Proteína Quinasa C , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular , Citoplasma , Microtúbulos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo
15.
J Biol Chem ; 298(9): 102343, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933017

RESUMEN

Proximity-dependent protein labeling provides a powerful in vivo strategy to characterize the interactomes of specific proteins. We previously optimized a proximity labeling protocol for Caenorhabditis elegans using the highly active biotin ligase TurboID. A significant constraint on the sensitivity of TurboID is the presence of abundant endogenously biotinylated proteins that take up bandwidth in the mass spectrometer, notably carboxylases that use biotin as a cofactor. In C. elegans, these comprise POD-2/acetyl-CoA carboxylase alpha, PCCA-1/propionyl-CoA carboxylase alpha, PYC-1/pyruvate carboxylase, and MCCC-1/methylcrotonyl-CoA carboxylase alpha. Here, we developed ways to remove these carboxylases prior to streptavidin purification and mass spectrometry by engineering their corresponding genes to add a C-terminal His10 tag. This allows us to deplete them from C. elegans lysates using immobilized metal affinity chromatography. To demonstrate the method's efficacy, we use it to expand the interactome map of the presynaptic active zone protein ELKS-1. We identify many known active zone proteins, including UNC-10/RIM, SYD-2/liprin-alpha, SAD-1/BRSK1, CLA-1/CLArinet, C16E9.2/Sentryn, as well as previously uncharacterized potentially synaptic proteins such as the ortholog of human angiomotin, F59C12.3 and the uncharacterized protein R148.3. Our approach provides a quick and inexpensive solution to a common contaminant problem in biotin-dependent proximity labeling. The approach may be applicable to other model organisms and will enable deeper and more complete analysis of interactors for proteins of interest.


Asunto(s)
Biotinilación , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Carboxiliasas , Acetil-CoA Carboxilasa/metabolismo , Animales , Biotinilación/métodos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metilmalonil-CoA Descarboxilasa/metabolismo , Piruvato Carboxilasa/metabolismo , Estreptavidina
16.
J Biol Chem ; 298(10): 102415, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007615

RESUMEN

Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell's primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal , Proteostasis , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Activación Enzimática , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
17.
Nature ; 607(7919): 571-577, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794472

RESUMEN

Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1-4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a 'shunt-within-a-shunt' pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species.


Asunto(s)
Caenorhabditis elegans , Redes y Vías Metabólicas , Animales , Humanos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aminoácidos/metabolismo , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Animales , Propionatos/metabolismo , Vitamina B 12/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022236

RESUMEN

The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1-dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas de Ciclo Celular/metabolismo , Células Germinativas/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Activación Enzimática , Mutación/genética , Oocitos/citología , Oocitos/metabolismo , Fase Paquiteno , Fenotipo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Especificidad por Sustrato , Complejo Sinaptonémico/metabolismo , Temperatura
19.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614054

RESUMEN

Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Isocitrato Deshidrogenasa , Longevidad , Estrés Oxidativo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Longevidad/genética
20.
Cell Rep ; 37(13): 110166, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965433

RESUMEN

Animals encounter microorganisms in their habitats, adapting physiology and behavior accordingly. The nematode Caenorhabditis elegans is found in microbe-rich environments; however, its responses to fungi are not extensively studied. Here, we describe interactions of C. elegans and Penicillium brevicompactum, an ecologically relevant mold. Transcriptome studies reveal that co-culture upregulates stress response genes, including xenobiotic-metabolizing enzymes (XMEs), in C. elegans intestine and AMsh glial cells. The nuclear hormone receptors (NHRs) NHR-45 and NHR-156 are induction regulators, and mutants that cannot induce XMEs in the intestine when exposed to P. brevicompactum experience mitochondrial stress and exhibit developmental defects. Different C. elegans wild isolates harbor sequence polymorphisms in nhr-156, resulting in phenotypic diversity in AMsh glia responses to microbe exposure. We propose that P. brevicompactum mitochondria-targeting mycotoxins are deactivated by intestinal detoxification, allowing tolerance to moldy environments. Our studies support the idea that C. elegans NHRs may be regulated by environmental cues.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Mitocondrias/enzimología , Neuroglía/enzimología , Penicillium/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Inducción Enzimática , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Regulación del Desarrollo de la Expresión Génica , Mitocondrias/efectos de los fármacos , Mitocondrias/microbiología , Neuroglía/efectos de los fármacos , Neuroglía/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA