Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.800
1.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715103

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Calcium-Binding Proteins , Chromosomes, Human, Pair 14 , DNA Methylation , Genomic Imprinting , Intercellular Signaling Peptides and Proteins , Humans , Calcium-Binding Proteins/genetics , DNA Methylation/genetics , Chromosomes, Human, Pair 14/genetics , Intercellular Signaling Peptides and Proteins/genetics , Genomic Imprinting/genetics , Membrane Proteins/genetics , Child , Male , Comparative Genomic Hybridization/methods , Female , Chromosome Deletion , Child, Preschool , Phenotype , Abnormalities, Multiple/genetics , Imprinting Disorders , Muscle Hypotonia , Facies
2.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743266

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
3.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732216

Aspartate ß-hydroxylase (ASPH) is a protein associated with malignancy in a wide range of tumors. We hypothesize that inhibition of ASPH activity could have anti-tumor properties in patients with head and neck cancer. In this study, we screened tumor tissues of 155 head and neck squamous cell carcinoma (HNSCC) patients for the expression of ASPH using immunohistochemistry. We used an ASPH inhibitor, MO-I-1151, known to inhibit the catalytic activity of ASPH in the endoplasmic reticulum, to show its inhibitory effect on the migration of SCC35 head and neck cancer cells in cell monolayers and in matrix-embedded spheroid co-cultures with primary cancer-associated fibroblast (CAF) CAF 61137 of head and neck origin. We also studied a combined effect of MO-I-1151 and HfFucCS, an inhibitor of invasion-blocking heparan 6-O-endosulfatase activity. We found ASPH was upregulated in HNSCC tumors compared to the adjacent normal tissues. ASPH was uniformly high in expression, irrespective of tumor stage. High expression of ASPH in tumors led us to consider it as a therapeutic target in cell line models. ASPH inhibitor MO-I-1151 had significant effects on reducing migration and invasion of head and neck cancer cells, both in monolayers and matrix-embedded spheroids. The combination of the two enzyme inhibitors showed an additive effect on restricting invasion in the HNSCC cell monolayers and in the CAF-containing co-culture spheroids. We identify ASPH as an abundant protein in HNSCC tumors. Targeting ASPH with inhibitor MO-I-1151 effectively reduces CAF-mediated cellular invasion in cancer cell models. We propose that the additive effect of MO-I-1151 with HfFucCS, an inhibitor of heparan 6-O-endosulfatases, on HNSCC cells could improve interventions and needs to be further explored.


Cell Movement , Head and Neck Neoplasms , Neoplasm Invasiveness , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Up-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female , Middle Aged , Mixed Function Oxygenases/metabolism , Male , Coculture Techniques , Aged , Calcium-Binding Proteins , Membrane Proteins , Muscle Proteins
4.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732222

Colorectal cancer (CRC) is one of the most common neoplasms in developed countries, with increasing incidence and mortality, even in young people. A variety of serum markers have been associated with CRC (CEA, CA 19-9), but neither should be used as a screening tool for the diagnosis or evolution staging of CRC. The sensitivity and specificity of these markers are not as good as is required, so new ones need to be found. Matrix Gla protein and PIVKA II are involved in carcinogenesis, but few studies have evaluated their usefulness in predicting the presence and severity of CRC. Two hundred patients were divided into three groups: 80 patients were included in the control group; 80 with CRC and without hepatic metastasis were included in Group 1; 40 patients with CRC and hepatic metastasis were included in Group 2. Vitamin K-dependent proteins (VKDPs) levels in plasma were determined. Patients with CRC without methastasis (Group 1) and CRC patients with methastasis (Group 2) presented significantly higher values of CEA, CA 19-9, PIVKA II (310.05 ± 38.22 vs. 430.13 ± 122.13 vs. 20.23 ± 10.90), and ucMGP (14,300.00 ± 2387.02 vs. 13,410.52 ± 2243.16 vs. 1780.31 ± 864.70) compared to control group (Group 0). Interestingly, Group 1 presented the greatest PIVKA II values. Out of all the markers, significant differences between the histological subgroups were found only for ucMGP, but only in non-metastatic CRC. Studying the discrimination capacity between the patients with CRC vs. those without, no significant differences were found between the classical tumor markers and the VKDP AUROC curves (PIVKA II and ucMGP AUROCs = 1). For the metastatic stage, the sensitivity and specificity of the VKDPs were lower in comparison with those of CA 19-9 and CEA, respectively (PIVKA II AUROC = 0.789, ucMGP AUROC = 0.608). The serum levels of these VKDPs are significantly altered in patients with colorectal carcinoma; it is possible to find additional value of these in the early stages of the disease.


Biomarkers, Tumor , Calcium-Binding Proteins , Colorectal Neoplasms , Matrix Gla Protein , Prothrombin , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Male , Female , Biomarkers, Tumor/blood , Middle Aged , Prothrombin/metabolism , Calcium-Binding Proteins/blood , Aged , Extracellular Matrix Proteins/blood , Protein Precursors/blood , Adult , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Vitamin K/blood , ROC Curve , CA-19-9 Antigen/blood , Carcinoembryonic Antigen/blood , Biomarkers
5.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725009

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Down-Regulation , Microglia , Neuralgia , Osteoarthritis, Knee , Platelet-Rich Plasma , Rats, Sprague-Dawley , Animals , Male , Neuralgia/therapy , Neuralgia/metabolism , Microglia/metabolism , Rats , Osteoarthritis, Knee/therapy , Activating Transcription Factor 3/metabolism , Ganglia, Spinal/metabolism , Disease Models, Animal , Injections, Intra-Articular , Calcium-Binding Proteins/metabolism , Iodoacetic Acid/toxicity , Microfilament Proteins
6.
PLoS One ; 19(5): e0301855, 2024.
Article En | MEDLINE | ID: mdl-38753592

Calcium binding protein, spermatid associated 1 (CABS1) is a protein most widely studied in spermatogenesis. However, mRNA for CABS1 has been found in numerous tissues, albeit with little information about the protein. Previously, we identified CABS1 mRNA and protein in human salivary glands and provided evidence that in humans CABS1 contains a heptapeptide near its carboxyl terminus that has anti-inflammatory activities. Moreover, levels of an immunoreactive form of CABS1 were elevated in psychological stress. To more fully characterize human CABS1 we developed additional polyclonal and monoclonal antibodies to different sections of the protein and used these antibodies to characterize CABS1 in an overexpression cell lysate, human salivary glands, saliva, serum and testes using western blot, immunohistochemistry and bioinformatics approaches exploiting the Gene Expression Omnibus (GEO) database. CABS1 appears to have multiple molecular weight forms, consistent with its recognition as a structurally disordered protein, a protein with structural plasticity. Interestingly, in human testes, its cellular distribution differs from that in rodents and pigs, and includes Leydig cells, primary spermatogonia, Sertoli cells and developing spermatocytes and spermatids, Geodata suggests that CABS1 is much more widely distributed than previously recognized, including in the urogenital, gastrointestinal and respiratory tracts, as well as in the nervous system, immune system and other tissues. Much remains to be learned about this intriguing protein.


Calcium-Binding Proteins , Testis , Humans , Male , Testis/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Animals , Saliva/metabolism , Salivary Glands/metabolism , Spermatids/metabolism , Spermatogenesis
7.
Plant Mol Biol ; 114(3): 53, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714550

Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.


Plant Proteins , Signal Transduction , Stress, Physiological , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants/genetics , Plants/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Plant Growth Regulators/metabolism , Reactive Oxygen Species/metabolism
8.
PLoS One ; 19(5): e0302780, 2024.
Article En | MEDLINE | ID: mdl-38713738

Reticulocalbin 1 (RCN1) is a calcium-binding protein involved in the regulation of calcium homeostasis in the endoplasmic reticulum. The aim of this study was to explore the clinical value and biological role of RCN1 in esophageal squamous cell carcinoma (ESCC). In addition, we investigated the effect of RCN1 on the polarization of tumor-associated macrophages (TAMs). The GSE53625 dataset from the Gene Expression Omnibus database was used to analyze the expression of RCN1 mRNA and its relationship with clinical value and immune cell infiltration. Immunohistochemistry was used to validate the expression of RCN1 and its correlation with clinicopathological characteristics. Subsequently, transwell and cell scratch assays were conducted to evaluate the migration and invasion abilities of ESCC cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot, while apoptosis was detected by flow cytometry and western blot. Additionally, qRT‒PCR was utilized to evaluate the role of RCN1 in macrophage polarization. RCN1 was significantly upregulated in ESCC tissues and was closely associated with lymphatic metastasis and a poor prognosis, and was an independent prognostic factor for ESCC in patients. Knockdown of RCN1 significantly inhibited the migration, invasion, and EMT of ESCC cells, and promoted cell apoptosis. In addition, RCN1 downregulation inhibited M2 polarization. RCN1 is upregulated in ESCC patients and is negatively correlated with patient prognosis. Knocking down RCN1 inhibits ESCC progression and M2 polarization. RCN1 can serve as a potential diagnostic and prognostic indicator for ESCC, and targeting RCN1 is a very promising therapeutic strategy.


Calcium-Binding Proteins , Down-Regulation , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Female , Male , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Middle Aged , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Movement/genetics , Disease Progression , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Apoptosis , Prognosis , Macrophages/metabolism
9.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758791

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Calcium-Binding Proteins , Nerve Tissue Proteins , Neurotransmitter Agents , Receptor, EphB2 , SNARE Proteins , Synaptic Transmission , SNARE Proteins/metabolism , Animals , Neurotransmitter Agents/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptor, EphB2/metabolism , Receptor, EphB2/genetics , Calcium-Binding Proteins/metabolism , Protein Binding , Humans , Mice , Rats
10.
Nat Commun ; 15(1): 4235, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762489

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


COVID-19 , Endothelial Cells , Lung , Macrophage Activation , SARS-CoV-2 , Animals , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/virology , Endothelial Cells/immunology , SARS-CoV-2/physiology , Lung/virology , Lung/pathology , Lung/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Mice, Inbred C57BL , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Male , Macrophages/metabolism , Macrophages/immunology , Female , Mice, Knockout , Extracellular Matrix Proteins
11.
Diagn Pathol ; 19(1): 68, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741104

INTRODUCTION: Primary malignant hepatic vascular tumors with various malignant potentials include epithelioid hemangioendothelioma (EHE) and angiosarcoma (AS), which may overlap pathologically. This study aimed to compare the pathological findings of hepatic EHE with those of AS, in association with patient outcomes. METHODS: Fifty-nine histologically confirmed patients with 34 EHE and 25 AS were admitted to a tertiary hospital from 2003 to 2020. Their EHE and AS pathological features were compared. Immunohistochemistry for CD31, ERG, CAMTA-1, TFE3, P53, and Ki-67 labeling was performed on paraffin-embedded blocks. Markers, along with histological findings, were analyzed for the purposes of diagnostic and prognostic significance by multivariate analysis. RESULTS: CAMTA-1 was 91.2% positive in EHE, but negative in AS (p = < 0.001). AS was significantly correlated to an aberrant p53 expression, high Ki-67 labeling, and high mitotic activity, compared to EHE (all, p = < 0.001). EHE can be classified as low grade (LG) and high grade (HG) using the prognostic values of mitotic activity and ki-67 labeling (sensitivity = 1, specificity = 1). Low grade-EHE showed significantly better overall survival than high grade-EHE (p = 0.020). CONCLUSIONS: Immunohistochemistry for CAMTA-1, P53, and Ki-67 labeling may help distinguish EHE and AS in histologically ambiguous cases, especially small biopsied tissue. Moreover, the combination of mitotic activity and Ki-67 labeling can be a prognostic factor for EHE with various clinical features.


Biomarkers, Tumor , Hemangioendothelioma, Epithelioid , Hemangiosarcoma , Liver Neoplasms , Humans , Male , Female , Middle Aged , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Biomarkers, Tumor/analysis , Hemangioendothelioma, Epithelioid/pathology , Hemangioendothelioma, Epithelioid/diagnosis , Hemangioendothelioma, Epithelioid/mortality , Prognosis , Adult , Aged , Hemangiosarcoma/pathology , Hemangiosarcoma/mortality , Hemangiosarcoma/diagnosis , Immunohistochemistry , Ki-67 Antigen/analysis , Young Adult , Calcium-Binding Proteins , Trans-Activators
12.
Europace ; 26(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38558121

AIMS: Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. METHODS AND RESULTS: We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6-3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79-0.87) and calibration slope of 0.97. CONCLUSION: The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)-positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.


Arrhythmias, Cardiac , Defibrillators, Implantable , Female , Humans , Male , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/therapy , Calcium-Binding Proteins/genetics , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Reproducibility of Results , Risk Factors , Adult , Middle Aged
13.
Nat Commun ; 15(1): 2817, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561399

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-ß signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.


Osteoarthritis , Humans , Retrospective Studies , Osteoarthritis/diagnosis , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Biomarkers , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Machine Learning , Calcium-Binding Proteins
14.
Neuroreport ; 35(9): 590-600, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38652514

Intracerebral hemorrhage (ICH) is a fatal brain injury, but the current treatments for it are inadequate to reduce the severity of secondary brain injury. Our study aims to explore the molecular mechanism of Egr1 and Phlda1 in regulating hemin-induced neuronal pyroptosis, and hope to provide novel therapeutic targets for ICH treatment. Mouse hippocampal neuron cells treated with hemin were used to simulate an in-vitro ICH model. Using qRT-PCR and western blot to evaluate mRNA and protein concentrations. MTT assay was utilized to assess cell viability. LDH levels were determined by lactate Dehydrogenase Activity Assay Kit. IL-1ß and IL-18 levels were examined by ELISA. The interaction of Egr1 and Phlda1 promoter was evaluated using chromatin immunoprecipitation and dual-luciferase reporter assays. Egr1 and Phlda1 were both upregulated in HT22 cells following hemin treatment. Hemin treatment caused a significant reduction in HT22 cell viability, an increase in Nlrc4 and HT22 cell pyroptosis, and heightened inflammation. However, knocking down Egr1 neutralized hemin-induced effects on HT22 cells. Egr1 bound to the promoter of Phlda1 and transcriptionally activated Phlda1. Silencing Phlda1 significantly reduced Nlrc4-dependent neuronal pyroptosis. Conversely, overexpressing Phlda1 mitigated the inhibitory effects of Egr1 knockdown on Nlrc4 and neuronal pyroptosis during ICH. Egr1 enhanced neuronal pyroptosis mediated by Nlrc4 under ICH via transcriptionally activating Phlda1.


Cerebral Hemorrhage , Early Growth Response Protein 1 , Neurons , Pyroptosis , Animals , Pyroptosis/physiology , Pyroptosis/drug effects , Early Growth Response Protein 1/metabolism , Cerebral Hemorrhage/metabolism , Mice , Neurons/metabolism , Neurons/drug effects , Calcium-Binding Proteins/metabolism , Hemin/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Cell Line
15.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612855

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Lipopolysaccharides , Osteogenesis , Humans , Animals , Rats , Rats, Sprague-Dawley , X-Ray Microtomography , Inflammation/genetics , Calcium-Binding Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
16.
Emerg Microbes Infect ; 13(1): 2350168, 2024 Dec.
Article En | MEDLINE | ID: mdl-38687703

ABSTRACTBorna disease virus 1 (BoDV-1) was just recently shown to cause predominantly fatal encephalitis in humans. Despite its rarity, bornavirus encephalitis (BVE) can be considered a model disease for encephalitic infections caused by neurotropic viruses and understanding its pathomechanism is of utmost relevance. Aim of this study was to compare the extent and distribution pattern of cerebral inflammation with the clinical course of disease, and individual therapeutic procedures. For this, autoptic brain material from seven patients with fatal BVE was included in this study. Tissue was stained immunohistochemically for pan-lymphocytic marker CD45, the nucleoprotein of BoDV-1, as well as glial marker GFAP and microglial marker Iba1. Sections were digitalized and counted for CD45-positive and BoDV-1-positive cells. For GFAP and Iba1, a semiquantitative score was determined. Furthermore, detailed information about the individual clinical course and therapy were retrieved and summarized in a standardized way. Analysis of the distribution of lymphocytes shows interindividual patterns. In contrast, when looking at the BoDV-1-positive glial cells and neurons, a massive viral involvement in the brain stem was noticeable. Three of the seven patients received early high-dose steroids, which led to a significantly lower lymphocytic infiltration of the central nervous tissue and a longer survival compared to the patients who were treated with steroids later in the course of disease. This study highlights the potential importance of early high-dose immunosuppressive therapy in BVE. Our findings hint at a promising treatment option which should be corroborated in future observational or prospective therapy studies.ABBREVIATIONS: BoDV-1: Borna disease virus 1; BVE: bornavirus encephalitis; Cb: cerebellum; CNS: central nervous system; FL: frontal lobe; GFAP: glial fibrillary acid protein; Hc: hippocampus; Iba1: ionized calcium-binding adapter molecule 1; Iba1act: general activation of microglial cells; Iba1nod: formation of microglial nodules; IL: insula; Me: mesencephalon; Mo: medulla oblongata; OL: occipital lobe; pASS: per average of 10 screenshots; patearly: patients treated with early high dose steroid shot; patlate: patients treated with late or none high dose steroid shot; Po: pons; So: stria olfactoria; Str: striatum.


Brain , Humans , Male , Female , Brain/virology , Brain/immunology , Borna Disease/drug therapy , Borna Disease/virology , Lymphocytes/immunology , Microfilament Proteins/metabolism , Leukocyte Common Antigens/metabolism , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Immunosuppression Therapy , Borna disease virus/physiology , Encephalitis, Viral/drug therapy , Encephalitis, Viral/virology , Encephalitis, Viral/immunology , Neuroglia/virology , Neuroglia/metabolism
17.
Am J Surg Pathol ; 48(6): 751-760, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38584480

Intrahepatic cholangiocarcinoma (iCCA) has been newly subclassified into two different subtypes: large-duct (LD) type and small-duct (SD) type. However, many cases are difficult to subclassify, and there is no consensus regarding subclassification criteria. LD type expresses the highly sensitive diagnostic marker S100 calcium-binding protein P (S100P), while SD type lacks sensitive markers. We identified osteopontin (OPN) as a highly sensitive marker for SD type. This study aimed to develop new subclassification criteria for LD-type and SD-type iCCA. We retrospectively investigated 74 patients with iCCA and subclassified them based on whole-section immunostaining of S100P and OPN. Of the 74 cases, 41 were subclassified as LD type, 32 as SD type, and one was indeterminate. Notably, all S100P-negative cases had OPN positivity. Seventy-three of the 74 cases (98.6%) were clearly and easily subclassified as LD or SD type using only these 2 markers. We also determined the value of immunohistochemistry in cases that were difficult to diagnose based on hematoxylin-eosin and Alcian blue-periodic acid-Schiff staining. Furthermore, we analyzed the clinicopathological characteristics and prognoses of these 2 subtypes. LD type was a poor prognostic factor on univariate analysis; it had significantly worse overall survival ( P = 0.007) and recurrence-free survival ( P < 0.001) than the SD type. In conclusion, we propose new subclassification criteria for iCCA based on immunostaining of S100P and OPN. These criteria may help pathologists to diagnose subtypes of iCCA, supporting future clinical trials and the development of medications for these 2 subtypes as distinct cancers.


Bile Duct Neoplasms , Biomarkers, Tumor , Calcium-Binding Proteins , Cholangiocarcinoma , Immunohistochemistry , Osteopontin , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/classification , Cholangiocarcinoma/mortality , Cholangiocarcinoma/chemistry , Cholangiocarcinoma/diagnosis , Osteopontin/analysis , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/classification , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/chemistry , Bile Duct Neoplasms/diagnosis , Male , Female , Middle Aged , Biomarkers, Tumor/analysis , Aged , Retrospective Studies , Calcium-Binding Proteins/analysis , Adult , Aged, 80 and over , Neoplasm Proteins/analysis , Predictive Value of Tests , Bile Ducts, Intrahepatic/pathology , Bile Ducts, Intrahepatic/chemistry
18.
J Physiol ; 602(10): 2265-2285, 2024 May.
Article En | MEDLINE | ID: mdl-38632887

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Adaptor Proteins, Signal Transducing , Animals, Newborn , Calcium-Binding Proteins , Claudin-5 , Endothelial Cells , Hyperoxia , Receptors, Notch , Signal Transduction , Animals , Hyperoxia/metabolism , Claudin-5/metabolism , Claudin-5/genetics , Mice , Humans , Endothelial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Brain/metabolism , Brain/blood supply , Brain/growth & development , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
19.
Pathology ; 56(4): 516-527, 2024 Jun.
Article En | MEDLINE | ID: mdl-38570266

Matrix Gla protein (MGP) and trichorhinophalangeal syndrome type 1 (TRPS1) have recently emerged as novel breast-specific immunohistochemical (IHC) markers, particularly for triple-negative breast cancer (TNBC) and metaplastic carcinoma. The present study aimed to validate and compare the expression of MGP, TRPS1 and GATA binding protein 3 (GATA3) in metastatic breast carcinoma (MBC), invasive breast carcinoma (IBC) with special features, including special types of invasive breast carcinoma (IBC-STs) and invasive breast carcinoma of no special type with unique features, and mammary and non-mammary salivary gland-type tumours (SGTs). Among all enrolled cases, MGP, TRPS1 and GATA3 had comparable high positivity for ER/PR-positive (p=0.148) and HER2-positive (p=0.310) breast carcinoma (BC), while GATA3 positivity was significantly lower in TNBC (p<0.001). Similarly, the positive rates of MGP and TRPS1 in MBCs (99.4%), were higher than in GATA3 (90.9%, p<0.001). Among the IBC-STs, 98.4% of invasive lobular carcinomas (ILCs) were positive for all three markers. Among neuroendocrine tumours (NTs), all cases were positive for TRPS1 and GATA3, while MGP positivity was relatively low (81.8%, p=0.313). In the neuroendocrine carcinoma (NC) subgroup, all cases were positive for GATA3 and MGP, while one case was negative for TRPS1. All carcinomas with apocrine differentiation (APOs) were positive for GATA3 and MGP, while only 60% of the cases demonstrated moderate staining for TRPS1. Among mammary SGTs, MGP demonstrated the highest positivity (100%), followed by TRPS1 (96.0%) and GATA3 (72.0%). Positive staining for these markers was also frequently observed in non-mammary SGTs. Our findings further validate the high sensitivity of MGP and TRPS1 in MBCs, IBC-STs, and breast SGTs. However, none of these markers are capable of distinguishing between mammary and non-mammary SGTs.


Biomarkers, Tumor , Breast Neoplasms , Calcium-Binding Proteins , DNA-Binding Proteins , Extracellular Matrix Proteins , GATA3 Transcription Factor , Matrix Gla Protein , Repressor Proteins , Salivary Gland Neoplasms , Transcription Factors , Humans , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/analysis , Female , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Repressor Proteins/metabolism , Middle Aged , Transcription Factors/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/analysis , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/diagnosis , Salivary Gland Neoplasms/metabolism , Adult , Extracellular Matrix Proteins/metabolism , Aged , DNA-Binding Proteins/metabolism , Immunohistochemistry , Sensitivity and Specificity , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/metabolism , Aged, 80 and over
20.
Front Immunol ; 15: 1357072, 2024.
Article En | MEDLINE | ID: mdl-38638435

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
...