Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 12(9): e0184724, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886186

RESUMEN

Calsequestrin-2 (CASQ2) is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2) promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp) and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP) assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.


Asunto(s)
Calsecuestrina/genética , Calsecuestrina/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Western Blotting , Calcineurina/genética , Calcineurina/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
IUBMB Life ; 63(10): 847-55, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21901815

RESUMEN

The cytosolic calcium concentration ([Ca(2+)](c)) is key for the regulation of many cellular processes, such cell signaling and proliferation, metabolism, and muscle contraction. In cardiomyocytes, Ca(2+) is an important regulator in many cellular functions such electrophysiological processes, excitation-contraction coupling, regulation of contractile proteins activity, energy metabolism, cell death, and transcriptional regulation by the activation of Ca(2+)-dependent transcriptional pathways. In cardiomyocytes, the two main Ca(2+) -dependent pathways are the Ca(2+)/calmodulin-calcineurin-NFAT and the Ca(2+) /calmodulin-dependent kinases-MEF2. Both pathways are involved in the transcriptional control of many cardiac genes. Cardiac hypertrophy (CH) and heart failure (HF) are characterized by alterations in calcium handling such a low sarcoplasmic reticulum Ca(2+) content, decreased rate of Ca(2+) removal from the sarcoplasm, increased diastolic [Ca(2+)](c), and decreased systolic [Ca(2+)](c), all of them contributing to diminished contractibility and force generation in failing heart. At gene expression level, there are also many changes such decreased levels of SERCA2a and activation of a fetal gene expression program in cardiomyocytes. A variety of Ca(2+)-dependent signaling pathways have been implicated in CH and HF, but whether these pathways are interrelated and whether there is specificity among them are still unclear and under investigation. The focus of this review is to make an analysis of the current knowledge about the role of Ca(2+) signaling pathways in the regulation of cardiac gene expression making special emphasis in novel strategies to correct Ca(2+) handling alterations by means of SERCA2a gene therapy.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Calcineurina/metabolismo , Calsecuestrina/metabolismo , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción NFATC/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
3.
Arq. bras. cardiol ; Arq. bras. cardiol;97(1): 46-52, jul. 2011. tab
Artículo en Portugués | LILACS | ID: lil-597664

RESUMEN

FUNDAMENTO: Treinamento físico (TF) aumenta a sensibilidade dos hormônios tireoidianos (HT) e a expressão gênica de estruturas moleculares envolvidas no movimento intracelular de cálcio do miocárdio, enquanto a restrição alimentar (RIA) promove efeitos contrários ao TF. OBJETIVO: Avaliar os efeitos da associação TF e RIA sobre os níveis plasmáticos dos HT e a produção de mRNA dos receptores HT e estruturas moleculares do movimento de cálcio do miocárdio de ratos. MÉTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exercício físico (EX, n = 7) e exercício físico + RIA (EX50, n = 7). A RIA foi de 50 por cento e o TF foi natação (1 hora/dia, cinco sessões/semana, 12 semanas consecutivas). Avaliaram-se as concentrações séricas de triiodotironina (T3), tiroxina (T4) e hormônio tireotrófico (TSH). O mRNA da bomba de cálcio do retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de cálcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TRα1 e TRβ1) do miocárdio foram avaliados por reação em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TRα1 e aumentou a expressão da PLB, NCX e canal-L. TF aumentou a expressão do TRβ1, canal-L e NCX. A associação TF e RIA reduziu T4 e TSH e aumentou o mRNA do TRβ1, SERCA2a, NCX, PLB e correlação do TRβ1 com a CQS e NCX. CONCLUSÃO: Associação TF e RIA aumentou o mRNA das estruturas moleculares cálcio transiente, porém o eixo HT-receptor não parece participar da transcrição gênica dessas estruturas.


BACKGROUND: Chronic exercise and food restriction (FR) have directionally opposite changes in transcription of molecular structures of calcium handling and thyroid hormone (TH) status. OBJECTIVE: Evaluate the association of chronic exercise and FR on serum thyroid hormones and gene transcription of molecular structures of intracellular calcium transients and thyroid receptors in myocardium of rats. METHODS: Male Wistar Kyoto rats, divided into two groups: control (C, n = 7), FR (R50, n = 7), chronic exercise (EX, n = 7) and chronic exercise + FR (EX50, n = 7). FR was of 50 percent and exercise was swimming (1 hour/day, 5 days/week, during 12 weeks). Serum concentrations of T3, T4 and TSH were determined. The mRNA gene expression of the sarcoplasmatic reticulum calcium pump (SERCA2a), phospholamban (PLB), Na+/Ca+2 exchanger (NCX), calcium channel L-type (L-channel), ryanodine (RYR), calsequestrin (CQS) and HT receptor (TRα1 and TRβ1) of the myocardium was performed by PCR real-time. RESULTS: FR reduced serum levels of T4 and TSH and TRα1 mRNA and increased the expression of PLB, NCX and L-channel. Exercise increased the TRβ1 receptor, L-channel and NCX. The association of exercise and FR reduced plasma T4 and TSH, TRβ1 mRNA increase, SERCA2a, NCX and PLB, and there was a significant correlation of TRβ1 with CQS and NXC. CONCLUSION: Chronic exercise and food restriction increased the mRNA of transient Ca2+ proteins; however, TH-receptor axis cannot participate in the transcription of mRNA of myocardial calcium transient proteins.


FUNDAMENTO: Entrenamiento físico (EF) aumenta la sensibilidad de las hormonas tiroideas (HT) y la expresión génica de estructuras moleculares envueltas en el movimiento intracelular de calcio del miocardio, mientras que la restricción alimenticia (RA) promueve efectos contrarios al EF. OBJETIVO: Evaluar los efectos de la asociación EF y RA sobre los niveles plasmáticos de los HT y la producción de ARNm de los receptores HT y estructuras moleculares del movimiento de calcio del miocardio de ratones. MÉTODOS: Se utilizaron ratones Wistar Kyoto divididos en: control (C, n = 7), RA (R50, n = 7), ejercicio físico (EX, n = 7) y ejercicio físico + RA (EX50, n = 7). La RA fue de 50 por ciento y el EF fue natación (1 hora/día, cinco sesiones/semana, 12 semanas consecutivas). Se evaluaron las concentraciones séricas de triyodotironina (T3), tiroxina (T4) y hormona tireotrófico (TSH). El ARNm de la bomba de calcio del retículo sarcoplasmático (SERCA2a), fosfolamban (PLB), intercambiador Na+/Ca+2 (NCX), canal lento de calcio (canal-L), rianodina (RYR), calsequestrina (CQS) y receptor de HT (TRα1 y TRβ1) del miocardio fueron evaluados por reacción en cadena de la polimerasa (PCR) en tiempo real. RESULTADOS: RA redujo el T4, TSH y ARNm del TRα1 y aumentó la expresión de la PLB, NCX y canal-L. EF aumentó la expresión del TRβ1, canal-L y NCX. La asociación EF y RA redujo T4 y TSH y aumentó el ARNm del TRβ1, SERCA2a, NCX, PLB y correlación del TRβ1 con la CQS y NCX. CONCLUSIÓN: Asociación EF y RA aumentó el ARNm de las estructuras moleculares calcio transiente, sin embargo el eje HT-receptor no parece participar de la transcripción génica de esas estructuras.


Asunto(s)
Animales , Masculino , Ratas , Restricción Calórica , Miocardio/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/metabolismo , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/metabolismo , Expresión Génica , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hormona Tiroidea/metabolismo , Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo , Hormonas Tiroideas/sangre , Regulación hacia Arriba
4.
Arq Bras Cardiol ; 97(1): 46-52, 2011 Jul.
Artículo en Inglés, Portugués, Español | MEDLINE | ID: mdl-21625820

RESUMEN

BACKGROUND: Chronic exercise and food restriction (FR) have directionally opposite changes in transcription of molecular structures of calcium handling and thyroid hormone (TH) status. OBJECTIVE: Evaluate the association of chronic exercise and FR on serum thyroid hormones and gene transcription of molecular structures of intracellular calcium transients and thyroid receptors in myocardium of rats. METHODS: Male Wistar Kyoto rats, divided into two groups: control (C, n = 7), FR (R50, n = 7), chronic exercise (EX, n = 7) and chronic exercise + FR (EX50, n = 7). FR was of 50% and exercise was swimming (1 hour/day, 5 days/week, during 12 weeks). Serum concentrations of T3, T4 and TSH were determined. The mRNA gene expression of the sarcoplasmatic reticulum calcium pump (SERCA2a), phospholamban (PLB), Na+/Ca+2 exchanger (NCX), calcium channel L-type (L-channel), ryanodine (RYR), calsequestrin (CQS) and HT receptor (TRα1 and TRß1) of the myocardium was performed by PCR real-time. RESULTS: FR reduced serum levels of T4 and TSH and TRα1 mRNA and increased the expression of PLB, NCX and L-channel. Exercise increased the TRß1 receptor, L-channel and NCX. The association of exercise and FR reduced plasma T4 and TSH, TRß1 mRNA increase, SERCA2a, NCX and PLB, and there was a significant correlation of TRß1 with CQS and NXC. CONCLUSION: Chronic exercise and food restriction increased the mRNA of transient Ca2+ proteins; however, TH-receptor axis cannot participate in the transcription of mRNA of myocardial calcium transient proteins.


Asunto(s)
Restricción Calórica , Miocardio/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/metabolismo , Expresión Génica , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hormona Tiroidea/metabolismo , Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Hormonas Tiroideas/sangre , Factores de Tiempo , Regulación hacia Arriba
5.
Int J Exp Pathol ; 91(1): 63-71, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20002835

RESUMEN

Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.


Asunto(s)
Calmodulina/metabolismo , Calsecuestrina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Western Blotting , Diafragma/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Miocardio/metabolismo , Necrosis , Fenotipo
6.
Muscle Nerve ; 39(5): 609-15, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19301368

RESUMEN

In the mdx mouse model of Duchenne muscular dystrophy, the lack of dystrophin is associated with increased calcium levels and skeletal muscle myonecrosis. The intrinsic laryngeal muscles (ILM) are protected and do not undergo myonecrosis. We investigated whether this protection is related to an increased expression of calcium-binding proteins, which may protect against the elevated calcium levels seen in dystrophic fibers. The expression of sarcoplasmic-endoplasmic-reticulum Ca(2+)-ATPase and calsequestrin was examined in ILM and in nonspared limb muscles of control and mdx mice using immunofluorescence and immunoblotting. Dystrophic ILM presented a significant increase in the proteins studied when compared to controls. The increase of Ca(2+)-handling proteins in dystrophic ILM may permit better maintenance of calcium homeostasis, with the consequent absence of myonecrosis. The results further support the concept that abnormal Ca(2+)-handling is involved in dystrophinopathies. Muscle Nerve, 2009.


Asunto(s)
Calsecuestrina/metabolismo , Distrofina/deficiencia , Regulación de la Expresión Génica/genética , Músculos Laríngeos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx
7.
Muscle Nerve ; 39(2): 167-76, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19145649

RESUMEN

The lack of dystrophin in mdx mice and in Duchenne muscular dystrophy causes sarcolemmal breakdown and increased calcium influx followed by myonecrosis. We examined whether the calcium channel blockers diltiazem and verapamil protect dystrophic muscles from degeneration. Mdx mice received daily intraperitoneal injections of diltiazem or verapamil for 18 days, followed by removal of the sternomastoid, diaphragm, tibialis anterior, and cardiac muscles. Control mdx mice were injected with saline. Both drugs significantly decreased blood creatine kinase levels. Total calcium content was significantly higher in mdx muscles than in control C57Bl/10. Verapamil and diltiazem reduced total calcium content only in diaphragm and cardiac muscle. Histological analysis showed that diltiazem significantly attenuated myonecrosis in diaphragm. Immunoblots showed a significant increase of calsequestrin and beta-dystroglycan levels in some diltiazem- and verapamil-treated muscles. Possible interactions of these drugs with the sarcoplasmic reticulum and sarcolemma may also contribute to the improvement of the dystrophic phenotype.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Diltiazem/uso terapéutico , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/prevención & control , Sarcolema/efectos de los fármacos , Verapamilo/uso terapéutico , Animales , Calcio/metabolismo , Calsecuestrina/metabolismo , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Sarcolema/metabolismo
9.
Biol Res ; 39(3): 493-503, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17106581

RESUMEN

We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25 degrees C calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s(-1)) than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s(-1)) than the slower component (k = 6.9 s(-1)), which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Membranas Intracelulares/metabolismo , Conejos
10.
Arch Cardiol Mex ; 76 Suppl 4: S18-32, 2006.
Artículo en Español | MEDLINE | ID: mdl-17469332

RESUMEN

The sarcoplasmic reticulum (SR) constitutes the main intracellular calcium store in striated muscle and plays an important role in the regulation of excitation-contraction-coupling (ECC) and of intracellular calcium concentrations during contraction and relaxation. The regulation of ECC occurs due to the interaction among the main proteins of the SR that are the calcium release channel or ryanodine receptor, the Ca2+-ATPase, phospholamban and calsequestrin. Due to the importance of ECC in the physiopathology of a number of cardiac diseases, the role of the SR and its components has been widely investigated in some pathologies, specifically cardiac hypertrophy, heart failure, and hereditary arrhythmias. Therefore, the SR proteins constitute an area of research of great interest for the development of new genetic and pharmacologic therapies; from this derives the importance of understanding the function of the SR. This review analyzes the expression, structure, and function of the main SR proteins, their role on myocardial contraction and relaxation and in the changes that occur in cardiac pathologies.


Asunto(s)
Cardiopatías/fisiopatología , Contracción Miocárdica/fisiología , Retículo Sarcoplasmático/fisiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Calsecuestrina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Cardiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Miocardio/metabolismo , Investigación , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Biol. Res ; 39(3): 493-503, 2006. ilus, graf
Artículo en Inglés | LILACS | ID: lil-437382

RESUMEN

We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25°C calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1) than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1) than the slower component (k = 6.9 s-1), which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.


Asunto(s)
Animales , Conejos , Calcio/metabolismo , Calsecuestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Electroforesis en Gel de Poliacrilamida , Membranas Intracelulares/metabolismo
12.
Biochemistry ; 35(41): 13419-25, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8873610

RESUMEN

Calcium binding to triads isolated from rabbit skeletal muscle followed a single hyperbolic function in the pH range 5.5-8.0. Maximal binding was obtained at pH 8.0; decreasing the pH decreased the binding capacity and, at pH < or = 6.0, increased Kd 2-fold. These results indicate that lowering the pH diminished calcium binding to calsequestrin, since this protein is the primary source of calcium binding sites in triads. Luminal pH had a marked effect on calcium release induced by 2 mM ATP, at pCa 5.0, pH 6.8. At a constant luminal [Ca2+] of 0.1 mM, release rate constants (k) and initial rates of release increased steadily as a function of decreasing luminal pH; at luminal pH 7.5, values of k < 0.4 s-1 were found, whereas at pH 5.5 values of k approximately 10 S-1 were obtained. Increasing luminal [Ca2+] from 0.05 mM to 0.7 mM had no effect on the k values measured at luminal pH 5.5. In contrast, at pH 6.8, increasing luminal [Ca2+] produced a marked increase in k values, that reached maximal values of k approximately 10 S-1 at 0.7 mM luminal [Ca2+]. Control experiments using fluorescent pH indicators showed that luminal pH did not change significantly during calcium release. It is proposed that luminal protons or calcium induces conformational changes in calsequestrin that in turn promote activation of the calcium release channels.


Asunto(s)
Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Canales de Calcio/metabolismo , Calsecuestrina/química , Calsecuestrina/metabolismo , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Cinética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Conformación Proteica , Protones , Conejos , Canal Liberador de Calcio Receptor de Rianodina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA