Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.395
1.
PLoS One ; 19(5): e0302628, 2024.
Article En | MEDLINE | ID: mdl-38723000

Blood vessels permit the selective passage of molecules and immune cells between tissues and circulation. Uncontrolled inflammatory responses from an infection can increase vascular permeability and edema, which can occasionally lead to fatal organ failure. We identified mexenone as a vascular permeability blocker by testing 2,910 compounds in the Clinically Applied Compound Library using the lipopolysaccharide (LPS)-induced vascular permeability assay. Mexenone suppressed the LPS-induced downregulation of junctional proteins and phosphorylation of VE-cadherin in Bovine Aortic Endothelial Cells (BAECs). The injection of mexenone 1 hr before LPS administration completely blocked LPS-induced lung vascular permeability and acute lung injury in mice after 18hr. Our results suggest that mexenone-induced endothelial cell (EC) barrier stabilization could be effective in treating sepsis patients.


Endothelial Cells , Lipopolysaccharides , Sepsis , Animals , Sepsis/drug therapy , Sepsis/chemically induced , Sepsis/metabolism , Mice , Cattle , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Capillary Permeability/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Male , Cadherins/metabolism , Mice, Inbred C57BL , Antigens, CD/metabolism
2.
Sci Rep ; 14(1): 10477, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714743

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Doxycycline , Glycocalyx , Lipopolysaccharides , Sepsis , Glycocalyx/metabolism , Glycocalyx/drug effects , Animals , Sepsis/drug therapy , Sepsis/metabolism , Doxycycline/pharmacology , Rats , Male , Capillary Permeability/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Syndecan-1/metabolism , Rats, Wistar , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neutrophils/metabolism , Neutrophils/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology
3.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747291

Idiopathic systemic capillary leak syndrome (ISCLS) is a rare, recurrent condition with dramatically increased blood vessel permeability and, therefore, induction of systemic edema, which may lead to organ damage and death. In this issue of the JCI, Ablooglu et al. showed that ISCLS vessels were hypersensitive to agents known to increase vascular permeability, using human biopsies, cell culture, and mouse models. Several endothelium-specific proteins that regulate endothelial junctions were dysregulated and thereby compromised the vascular barrier. These findings suggest that endothelium-intrinsic dysregulation underlies hyperpermeability and implicate the cytoplasmic serine/threonine protein phosphatase 2A (PP2A) as a potential drug target for the treatment of ISCLS.


Capillary Leak Syndrome , Capillary Permeability , Protein Phosphatase 2 , Humans , Animals , Mice , Capillary Leak Syndrome/pathology , Capillary Leak Syndrome/metabolism , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology
4.
Viruses ; 16(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38675970

Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.


Blood-Brain Barrier , Endothelial Cells , Transcytosis , Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Endothelial Cells/virology , Endothelial Cells/metabolism , Animals , Pregnancy , Female , Capillary Permeability , Placenta/virology , Placenta/metabolism , Brain/virology , Brain/metabolism
5.
J Neuroimaging ; 34(3): 320-328, 2024.
Article En | MEDLINE | ID: mdl-38616297

BACKGROUND AND PURPOSE: The purpose of this study is to evaluate the feasibility of using 3-dimensional (3D) ultra-short echo time (UTE) radial imaging method for measurement of the permeability of the blood-brain barrier (BBB) to gadolinium-based contrast agent. In this study, we propose to use the golden-angle radial sparse parallel (GRASP) method with 3D center-out trajectories for UTE, hence named as 3D UTE-GRASP. We first examined the feasibility of using 3D UTE-GRASP dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for differentiating subtle BBB disruptions induced by focused ultrasound (FUS). Then, we examined the BBB permeability changes in Alzheimer's disease (AD) pathology using Alzheimer's disease transgenic mice (5xFAD) at different ages. METHODS: For FUS experiments, we used four Sprague Dawley rats at similar ages where we compared BBB permeability of each rat receiving the FUS sonication with different acoustic power (0.4-1.0 MPa). For AD transgenic mice experiments, we included three 5xFAD mice (6, 12, and 16 months old) and three wild-type mice (4, 8, and 12 months old). RESULTS: The result from FUS experiments showed a progressive increase in BBB permeability with increase of acoustic power (p < .05), demonstrating the sensitivity of DCE-MRI method for detecting subtle changes in BBB disruption. Our AD transgenic mice experiments suggest an early BBB disruption in 5xFAD mice, which is further impaired with aging. CONCLUSION: The results in this study substantiate the feasibility of using the proposed 3D UTE-GRASP method for detecting subtle BBB permeability changes expected in neurodegenerative diseases, such as AD.


Alzheimer Disease , Blood-Brain Barrier , Contrast Media , Feasibility Studies , Magnetic Resonance Imaging , Mice, Transgenic , Rats, Sprague-Dawley , Blood-Brain Barrier/diagnostic imaging , Animals , Mice , Magnetic Resonance Imaging/methods , Rats , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Capillary Permeability/physiology , Imaging, Three-Dimensional/methods
6.
Fluids Barriers CNS ; 21(1): 36, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632611

BACKGROUND: Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS: In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS: We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION: Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Choroid Plexus , Retrospective Studies , Capillary Permeability
7.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38581236

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Endothelial Cells , Ovary , Female , Animals , Ovary/metabolism , Endothelial Cells/metabolism , Neurotensin/metabolism , Adherens Junctions/metabolism , Capillary Permeability , Cadherins/genetics , Cadherins/metabolism , Macaca/metabolism , Permeability , Endothelium, Vascular/metabolism , Mammals/metabolism
8.
Biomolecules ; 14(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38672403

Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.


Brain Injuries, Traumatic , Fibrinogen , Mice, Inbred C57BL , Mice, Knockout , Animals , Fibrinogen/metabolism , Fibrinogen/genetics , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Mice , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Male , Capillary Permeability , Heterozygote , Neurons/metabolism , Disease Models, Animal
9.
BMC Pediatr ; 24(1): 285, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678170

BACKGROUND: Kawasaki disease (KD) is a pediatric systemic vasculitis characterized by endothelial cell dysfunction. Semaphorin 7A (Sema7A) has been reported to regulate endothelial phenotypes associated with cardiovascular diseases, while its role in KD remains unknown. This study aims to investigate the effect of Sema7A on endothelial permeability and inflammatory response in KD conditions. METHODS: Blood samples were collected from 68 KD patients and 25 healthy children (HC). The levels of Sema7A and A Disintegrin and Metalloprotease 17 (ADAM17) in serum were measured by enzyme-linked immunosorbent assay (ELISA), and Sema7A expression in blood cells was analyzed by flow cytometry. Ex vivo monocytes were used for Sema7A shedding assays. In vitro human coronary artery endothelial cells (HCAECs) were cultured in KD sera and stimulated with Sema7A, and TNF-α, IL-1ß, IL-6, and IL-18 of HCAECs were measured by ELISA and qRT-PCR. HCAECs monolayer permeability was measured by FITC-dextran. RESULTS: The serum level of Sema7A was significantly higher in KD patients than in HC and correlated with disease severity. Monocytes were identified as one of the source of elevated serum Sema7A, which implicates a process of ADAM17-dependent shedding. Sera from KD patients induced upregulation of plexin C1 and integrin ß1 in HCAECs compared to sera from HC. Sema7A mediated the proinflammatory cytokine production of HCAECs in an integrin ß1-dependent manner, while both plexin C1 and integrin ß1 contributed to Sema7A-induced HCAEC hyperpermeability. CONCLUSIONS: Sema7A is involved in the progression of KD vasculitis by promoting endothelial permeability and inflammation through a plexin C1 and integrin ß1-dependent pathway. Sema7A may serve as a potential biomarker and therapeutic target in the prognosis and treatment of KD.


Antigens, CD , Integrin beta1 , Mucocutaneous Lymph Node Syndrome , Receptors, Cell Surface , Semaphorins , Humans , Semaphorins/metabolism , Semaphorins/blood , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/blood , Male , Female , Antigens, CD/metabolism , Integrin beta1/metabolism , Child, Preschool , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/blood , Case-Control Studies , Inflammation/metabolism , Infant , Nerve Tissue Proteins/metabolism , Endothelial Cells/metabolism , Child , Cells, Cultured , ADAM17 Protein/metabolism , Endothelium, Vascular/metabolism , Monocytes/metabolism , Capillary Permeability , GPI-Linked Proteins
10.
Crit Care ; 28(1): 136, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654391

BACKGROUND: In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS: ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS: 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS: Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.


Biomarkers , Capillary Permeability , Inflammation , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/blood , Male , Female , Middle Aged , Capillary Permeability/physiology , Capillary Permeability/drug effects , Inflammation/physiopathology , Inflammation/blood , Aged , Biomarkers/blood , Biomarkers/analysis , Angiopoietin-2/blood , Angiopoietin-2/analysis , Interleukin-8/blood , Interleukin-8/analysis , Interleukin-6/blood , Interleukin-6/analysis , Respiratory Mechanics/physiology
11.
Radiology ; 310(3): e230701, 2024 Mar.
Article En | MEDLINE | ID: mdl-38501951

Background Blood-brain barrier (BBB) permeability change is a possible pathologic mechanism of autoimmune encephalitis. Purpose To evaluate the change in BBB permeability in patients with autoimmune encephalitis as compared with healthy controls by using dynamic contrast-enhanced (DCE) MRI and to explore its predictive value for treatment response in patients. Materials and Methods This single-center retrospective study included consecutive patients with probable or possible autoimmune encephalitis and healthy controls who underwent DCE MRI between April 2020 and May 2021. Automatic volumetric segmentation was performed on three-dimensional T1-weighted images, and volume transfer constant (Ktrans) values were calculated at encephalitis-associated brain regions. Ktrans values were compared between the patients and controls, with adjustment for age and sex with use of a nonparametric approach. The Wilcoxon rank sum test was performed to compare Ktrans values of the good (improvement in modified Rankin Scale [mRS] score of at least two points or achievement of an mRS score of ≤2) and poor (improvement in mRS score of less than two points and achievement of an mRS score >2) treatment response groups among the patients. Results Thirty-eight patients with autoimmune encephalitis (median age, 38 years [IQR, 29-59 years]; 20 [53%] female) and 17 controls (median age, 71 years [IQR, 63-77 years]; 12 [71%] female) were included. All brain regions showed higher Ktrans values in patients as compared with controls (P < .001). The median difference in Ktrans between the patients and controls was largest in the right parahippocampal gyrus (25.1 × 10-4 min-1 [95% CI: 17.6, 43.4]). Among patients, the poor treatment response group had higher baseline Ktrans values in both cerebellar cortices (P = .03), the left cerebellar cortex (P = .02), right cerebellar cortex (P = .045), left cerebral cortex (P = .045), and left postcentral gyrus (P = .03) than the good treatment response group. Conclusion DCE MRI demonstrated that BBB permeability was increased in all brain regions in patients with autoimmune encephalitis as compared with controls, and baseline Ktrans values were higher in patients with poor treatment response in the cerebellar cortex, left cerebral cortex, and left postcentral gyrus as compared with the good response group. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.


Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Female , Adult , Aged , Male , Capillary Permeability , Retrospective Studies , Encephalitis/diagnostic imaging , Magnetic Resonance Imaging
12.
Int J Biol Macromol ; 265(Pt 1): 130642, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460644

How selectively increase blood-tumor barrier (BTB) permeability is crucial to enhance the delivery of chemotherapeutic agents to brain tumor tissues. In this study, we established in vitro models of the blood-brain barrier (BBB) and BTB using endothelial cells (ECs) co-cultured with human astrocytes (AECs) and glioma cells (GECs), respectively. The findings revealed high expressions of the RNA-binding protein FXR1 and SNORD63 in GECs, where FXR1 was found to bind and stabilize SNORD63. Knockdown of FXR1 resulted in decreased expression of tight-junction-related proteins and increased BTB permeability by down-regulating SNORD63. SNORD63 played a role in mediating the 2'-O-methylation modification of POU6F1 mRNA, leading to the downregulation of POU6F1 protein expression. POU6F1 showed low expression in GECs and acted as a transcription factor to regulate BTB permeability by binding to the promoter regions of ZO-1, occludin, and claudin-5 mRNAs and negatively regulating their expressions. Finally, the targeted regulation of FXR1, SNORD63, and POU6F1 expressions, individually or in combination, effectively enhanced doxorubicin passage through the BTB and induced apoptosis in glioma cells. This study aims to elucidate the underlying mechanism of the FXR1/SNORD63/POU6F1 axis in regulating BTB permeability, offering a novel strategy to improve the efficacy of glioma chemotherapy.


Brain Neoplasms , Glioma , Hematologic Neoplasms , MicroRNAs , POU Domain Factors , Humans , MicroRNAs/genetics , Endothelial Cells/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism , Brain Neoplasms/pathology , Glioma/pathology , Blood-Brain Barrier/metabolism , Tight Junction Proteins/metabolism , Occludin/genetics , Hematologic Neoplasms/pathology , Permeability , Methylation , Capillary Permeability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
13.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Article En | MEDLINE | ID: mdl-38432910

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


COVID-19 , Communicable Diseases , Endotoxemia , Animals , Mice , Capillary Permeability , Endotoxemia/drug therapy , Lipopolysaccharides , SARS-CoV-2 , Claudin-5 , Cytokines , Receptors, Cell Surface
14.
Cardiovasc Pathol ; 70: 107629, 2024.
Article En | MEDLINE | ID: mdl-38461960

BACKGROUND: Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE: The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS: A narrative review of relevant published research was conducted. RESULTS: Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION: This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.


Aorta, Abdominal , Aortic Aneurysm, Abdominal , Glycocalyx , Glycocalyx/pathology , Glycocalyx/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/physiopathology , Humans , Animals , Aorta, Abdominal/pathology , Aorta, Abdominal/metabolism , Aorta, Abdominal/physiopathology , Oxidative Stress , Mechanotransduction, Cellular , Capillary Permeability , Signal Transduction , Vascular Remodeling
15.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Article En | MEDLINE | ID: mdl-38469626

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Dipeptidyl Peptidase 4 , Lipopolysaccharides , Macrophages, Alveolar , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Bronchoalveolar Lavage Fluid , Capillary Permeability , Cells, Cultured , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Lung/pathology , Lung/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Mice, Knockout , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Tumor Necrosis Factor-alpha/metabolism
16.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Article En | MEDLINE | ID: mdl-38489029

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Capillary Permeability , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Humans , Male , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Proteomics , Mice, Inbred C57BL
17.
Resuscitation ; 198: 110150, 2024 May.
Article En | MEDLINE | ID: mdl-38401708

BACKGROUND: This study aimed to explore the changes in blood-brain barrier (BBB) permeability and intracranial pressure (ICP) for the first 24 h after the return of spontaneous circulation (ROSC) and their association with injury severity of cardiac arrest. METHODS: This prospective study analysed the BBB permeability assessed using the albumin quotient (Qa) and ICP every 2 h for the first 24 h after ROSC. The injury severity of cardiac arrest was assessed using Pittsburgh Cardiac Arrest Category (PCAC) scores. The primary outcome was the time course of changes in the BBB permeability and ICP for the first 24 h after ROSC and their association with injury severity (PCAC scores of 1-4). RESULTS: Qa and ICP were measured 274 and 197 times, respectively, in 32 enrolled patients. Overall, the BBB permeability increased progressively over time after ROSC, and then it increased significantly at 18 h after ROSC compared with the baseline. In contrast, the ICP revealed non-significant changes for the first 24 h after ROSC. The Qa in the PCAC 2 group was < 0.01, indicating normal or mild BBB disruption at all time points, whereas the PCAC 3 and 4 groups showed a significant increase in BBB permeability at 14 and 22 h, and 12 and 14 h after ROSC, respectively. CONCLUSION: BBB permeability increased progressively over time for the first 24 h after ROSC despite post-resuscitation care, whereas ICP did not change over time. BBB permeability has an individual pattern when stratified by injury severity.


Blood-Brain Barrier , Heart Arrest , Hypoxia-Ischemia, Brain , Intracranial Pressure , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/metabolism , Humans , Male , Female , Prospective Studies , Middle Aged , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/etiology , Heart Arrest/physiopathology , Heart Arrest/therapy , Heart Arrest/etiology , Aged , Intracranial Pressure/physiology , Time Factors , Return of Spontaneous Circulation , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/adverse effects , Capillary Permeability/physiology
18.
J Diabetes Complications ; 38(3): 108631, 2024 03.
Article En | MEDLINE | ID: mdl-38340519

BACKGROUND: Diabetic retinopathy is a common microvascular complication of diabetes and one of the major causes of blindness in the working-age population. Emerging evidence has elucidated that inflammation drives the key mechanism of diabetes-mediated retinal disturbance. As a new therapeutic drug targeting diabetes, whether dapagliflozin could improve vascular permeability from the perspective of anti-inflammatory effect need to be further explored. METHODS: Type 2 diabetic retinopathy rat model was established and confirmed by fundus fluorescein angiography (FFA). ELISA detected level of plasma inflammatory factors and C-peptide. HE staining, immunohistochemistry and western blot detected histopathology changes of retina, expression of retinal inflammatory factors and tight junction proteins. RESULTS: Dapagliflozin exhibited hypoglycemic effect comparable to insulin, but did not affect body weight. By inhibiting expression of inflammatory factors (NLRP3, Caspase-1, IL-18, NF-κB) in diabetic retina and plasma, dapagliflozin reduced damage of retinal tight junction proteins and improved retinal vascular permeability. The anti-inflammatory effect of dapagliflozin was superior to insulin. CONCLUSIONS: Dapagliflozin improved retinal vascular permeability by reducing diabetic retinal and plasma inflammatory factors. The anti-inflammatory mechanism of dapagliflozin is independent of hypoglycemic effect and superior to insulin.


Benzhydryl Compounds , Diabetes Mellitus , Diabetic Retinopathy , Glucosides , Animals , Rats , Diabetic Retinopathy/drug therapy , Capillary Permeability , Retina , Insulin , Insulin, Regular, Human , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Anti-Inflammatory Agents , Tight Junction Proteins
19.
J Exp Clin Cancer Res ; 43(1): 59, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413999

BACKGROUND: Hematological metastasis has been recognized as a crucial factor contributing to the high rates of metastasis and mortality observed in colorectal cancer (CRC). Notably, exosomes derived from cancer cells participate in the formation of CRC pre-metastatic niches; however, the mechanisms underlying their effects are largely unknown. While our preliminary research revealed the role of exosome-derived disintegrin and metalloproteinase 17 (ADAM17) in the early stages of CRC metastasis, the role of exosomal ADAM17 in CRC hematogenous metastasis remains unclear. METHODS: In the present study, we isolated and purified exosomes using ultracentrifugation and identified exosomal proteins through quantitative mass spectrometry. In vitro, co-culture assays were conducted to evaluate the impact of exosomal ADAM17 on the permeability of the blood vessel endothelium. Vascular endothelial cell resistance, the cell index, membrane protein separation, flow cytometry, and immunofluorescence were employed to investigate the mechanisms underlying exosomal ADAM17-induced vascular permeability. Additionally, a mouse model was established to elucidate the role of exosomal ADAM17 in the modulation of blood vessel permeability and pre-metastatic niche formation in vivo. RESULTS: Our clinical data indicated that ADAM17 derived from the circulating exosomes of patients with CRC could serve as a blood-based biomarker for predicting metastasis. The CRC-derived exosomal ADAM17 targeted vascular endothelial cells, thus enhancing vascular permeability by influencing vascular endothelial cadherin cell membrane localization. Moreover, exosomal ADAM17 mediated the formation of a pre-metastatic niche in nude mice by inducing vascular leakage, thereby promoting CRC metastasis. Nonetheless, ADAM17 selective inhibitors effectively reduced CRC metastasis in vivo. CONCLUSIONS: Our results suggest that exosomal ADAM17 plays a pivotal role in the hematogenous metastasis of CRC. Thus, this protein may serve as a valuable blood-based biomarker and potential drug target for CRC metastasis intervention.


Colorectal Neoplasms , Exosomes , MicroRNAs , Animals , Mice , Humans , MicroRNAs/metabolism , Endothelial Cells/metabolism , Capillary Permeability , Mice, Nude , Biomarkers/metabolism , Colorectal Neoplasms/pathology , Exosomes/metabolism , Cell Line, Tumor , Cell Proliferation , ADAM17 Protein/metabolism
20.
Sci Rep ; 14(1): 3596, 2024 02 13.
Article En | MEDLINE | ID: mdl-38351286

Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.


Receptor, PAR-1 , Vascular Diseases , Rats , Animals , Receptor, PAR-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Amphetamine/pharmacology , Capillary Permeability , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type III/metabolism , rho-Associated Kinases/metabolism , Vascular Diseases/metabolism , Endothelium, Vascular/metabolism , Actin Cytoskeleton/metabolism , Cells, Cultured
...