Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
J Hazard Mater ; 479: 135682, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236542

RESUMEN

Perfluorooctanoic acid (PFOA), an emerging pollutant, has been frequently detected in organic solid waste. It becomes a major concern for compost application, but studies on its toxic effects during composting are rare. This study evaluated the impact of PFOA presence at the environmentally relevant level on the humification process and microbiology during composting. The results showed that the PFOA presence (15.5 µg/kg dry) caused 45.5 % and 40.5 % decreases in the total organic carbon and humic acid-like substances, respectively. PFOA negatively affected microbial activity during the thermophilic period, as evidenced by the increases in reactive oxygen species and lactate dehydrogenase concentration. It altered the microbial community with an enrichment of Bacteroidota, conducive to resisting press. Unexpectedly, the PFOA presence induced hormesis at the maturity period, consistent with stimulated carbon metabolism (i.e., glycolysis and oxidative phosphorylation). The modulated microbial metabolism stimulated the catabolic metabolism of small-molecule humus precursors and reduced intracellular quinone availability. Furthermore, the secretion of auxiliary activities for crude fiber degradation was suppressed, which decreased the generation of extracellular quinone, and thereby impeded the humification process. These findings deciphered the metabolic response of composting to PFOA presence and highlighted the potential carbon loss of PFOA-containing composting.


Asunto(s)
Caprilatos , Carbono , Compostaje , Fluorocarburos , Sustancias Húmicas , Estrés Oxidativo , Caprilatos/toxicidad , Caprilatos/metabolismo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Sustancias Húmicas/análisis , Carbono/metabolismo , Estrés Oxidativo/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
J Environ Manage ; 369: 122412, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236608

RESUMEN

Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 µg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.


Asunto(s)
Caprilatos , Fluorocarburos , Metano , Aguas del Alcantarillado , Metano/metabolismo , Fluorocarburos/metabolismo , Anaerobiosis , Aguas del Alcantarillado/microbiología , Caprilatos/metabolismo , Reactores Biológicos
3.
J Hazard Mater ; 479: 135617, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39213772

RESUMEN

PFOA has garnered heightened scrutiny for its impact on denitrification, especially given its frequent detection in secondary effluent discharged from wastewater treatment plants. However, it is still unclear what potential risk PFOA release poses to a typical advanced treatment process, especially the sulfur-based autotrophic denitrification (SAD) process. In this study, different PFOA concentration were tested to explore their impact on denitrification kinetics and microbial dynamic responses of the SAD process. The results showed that an increase PFOA concentration from 0 to 1000 µg/L resulted in a decrease in nitrate removal rate from 9.52 to 7.73 mg-N/L·h. At the same time, it increased nitrite accumulation and N2O emission by 6.11 and 2.03 times, respectively. The inhibitory effect of PFOA on nitrate and nitrite reductase activity in the SAD process was linked to the observed fluctuations in nitrate and nitrite levels. It is noteworthy that nitrite reductase was more vulnerable to the influence of PFOA than nitrate reductase. Furthermore, PFOA showed a significant impact on gene expression and microbial community. Metabolic function prediction revealed a notable decrease in nitrogen metabolism and an increase in sulfur metabolism under PFOA exposure. This study highlights that PFOA has a considerable inhibitory effect on SAD performance.


Asunto(s)
Procesos Autotróficos , Caprilatos , Desnitrificación , Fluorocarburos , Nitratos , Nitritos , Azufre , Contaminantes Químicos del Agua , Desnitrificación/efectos de los fármacos , Procesos Autotróficos/efectos de los fármacos , Azufre/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Caprilatos/metabolismo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrito Reductasas/metabolismo , Nitrato-Reductasa/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos
4.
Sci Total Environ ; 949: 175205, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097023

RESUMEN

Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.


Asunto(s)
Fluorocarburos , Hojas de la Planta , Raíces de Plantas , Fluorocarburos/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Caprilatos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Verduras/metabolismo , Raphanus/metabolismo , Caproatos/metabolismo , Monitoreo del Ambiente
5.
Biomolecules ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39199401

RESUMEN

Decidualization denotes the morphological and biological differentiating process of human endometrial stromal cells (HESCs). Fatty acid pathways are critical for endometrial decidualization. However, the participation of fatty acids as an energy source and their role in endometrial decidualization have received little attention. To identify fatty acids and clarify their role in decidualization, we comprehensively evaluated free fatty acid profiles using liquid chromatography/Fourier transform mass spectrometry (LC/FT-MS). LC/FT-MS analysis detected 26 kinds of fatty acids in the culture medium of decidualized or un-decidualized HESCs. Only the production of octanoic acid, which is an essential energy source for embryonic development, was increased upon decidualization. The expressions of genes related to octanoic acid metabolism including ACADL, ACADM, and ACADS; genes encoding proteins catalyzing the first step of mitochondrial fatty acid beta-oxidation; and ACSL5 and ACSM5; genes encoding fatty acid synthesis proteins were significantly altered upon decidualization. These results suggest that decidualization promotes lipid metabolism, implying that decidualized HESCs require energy metabolism of the mitochondria in embryo implantation.


Asunto(s)
Caprilatos , Implantación del Embrión , Endometrio , Mitocondrias , Oxidación-Reducción , Células del Estroma , Femenino , Humanos , Células del Estroma/metabolismo , Células del Estroma/citología , Caprilatos/metabolismo , Endometrio/metabolismo , Endometrio/citología , Mitocondrias/metabolismo , Ácidos Grasos/metabolismo , Decidua/metabolismo , Decidua/citología , Células Cultivadas
6.
mSystems ; 9(8): e0041624, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38990071

RESUMEN

Medium-chain carboxylates (MCCs) are used in various industrial applications. These chemicals are typically extracted from palm oil, which is deemed not sustainable. Recent research has focused on microbial chain elongation using reactors to produce MCCs, such as n-caproate (C6) and n-caprylate (C8), from organic substrates such as wastes. Even though the production of n-caproate is relatively well-characterized, bacteria and metabolic pathways that are responsible for n-caprylate production are not. Here, three 5 L reactors with continuous membrane-based liquid-liquid extraction (i.e., pertraction) were fed ethanol and acetate and operated for an operating period of 234 days with different operating conditions. Metagenomic and metaproteomic analyses were employed. n-Caprylate production rates and reactor microbiomes differed between reactors even when operated similarly due to differences in H2 and O2 between the reactors. The complete reverse ß-oxidation (RBOX) pathway was present and expressed by several bacterial species in the Clostridia class. Several Oscillibacter spp., including Oscillibacter valericigenes, were positively correlated with n-caprylate production rates, while Clostridium kluyveri was positively correlated with n-caproate production. Pseudoclavibacter caeni, which is a strictly aerobic bacterium, was abundant across all the operating periods, regardless of n-caprylate production rates. This study provides insight into microbiota that are associated with n-caprylate production in open-culture reactors and provides ideas for further work.IMPORTANCEMicrobial chain elongation pathways in open-culture biotechnology systems can be utilized to convert organic waste and industrial side streams into valuable industrial chemicals. Here, we investigated the microbiota and metabolic pathways that produce medium-chain carboxylates (MCCs), including n-caproate (C6) and n-caprylate (C8), in reactors with in-line product extraction. Although the reactors in this study were operated similarly, different microbial communities dominated and were responsible for chain elongation. We found that different microbiota were responsible for n-caproate or n-caprylate production, and this can inform engineers on how to operate the systems better. We also observed which changes in operating conditions steered the production toward and away from n-caprylate, but more work is necessary to ascertain a mechanistic understanding that could be predictive. This study provides pertinent research questions for future work.


Asunto(s)
Reactores Biológicos , Microbiota , Reactores Biológicos/microbiología , Caprilatos/metabolismo , Caproatos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Extracción Líquido-Líquido/métodos
7.
Environ Geochem Health ; 46(9): 349, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073492

RESUMEN

Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.


Asunto(s)
Ácidos Alcanesulfónicos , Biodegradación Ambiental , Caprilatos , Fluorocarburos , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/toxicidad , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Animales , Tecnología Química Verde/métodos
8.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877484

RESUMEN

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Asunto(s)
Caprilatos , Fluorocarburos , Ocimum basilicum , Fotosíntesis , Hojas de la Planta , Ocimum basilicum/metabolismo , Ocimum basilicum/crecimiento & desarrollo , Ocimum basilicum/efectos de los fármacos , Caprilatos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Fluorocarburos/metabolismo , Estrés Oxidativo , Peroxidación de Lípido/efectos de los fármacos
9.
Front Endocrinol (Lausanne) ; 15: 1411483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828411

RESUMEN

Ghrelin is a peptide hormone with various important physiological functions. The unique feature of ghrelin is its serine 3 acyl-modification, which is essential for ghrelin activity. The major form of ghrelin is modified with n-octanoic acid (C8:0) by ghrelin O-acyltransferase. Various acyl modifications have been reported in different species. However, the underlying mechanism by which ghrelin is modified with various fatty acids remains to be elucidated. Herein, we report the purification of bovine, porcine, and equine ghrelins. The major active form of bovine ghrelin was a 27-amino acid peptide with an n-octanoyl (C8:0) modification at Ser3. The major active form of porcine and equine ghrelin was a 28-amino acid peptide. However, porcine ghrelin was modified with n-octanol (C8:0), whereas equine ghrelin was modified with n-butanol (C4:0) at Ser3. This study indicates the existence of structural divergence in ghrelin and suggests that it is necessary to measure the minor and major forms of ghrelin to fully understand its physiology.


Asunto(s)
Ghrelina , Animales , Ghrelina/metabolismo , Ghrelina/química , Caballos , Bovinos , Porcinos , Secuencia de Aminoácidos , Acilación , Caprilatos/metabolismo
10.
Curr Microbiol ; 81(8): 244, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935285

RESUMEN

A novel thermotolerant caproic acid-producing bacterial strain, Clostridium M1NH, was successfully isolated from sewage sludge. Ethanol and acetic acid at a molar ratio of 4:1 proved to be the optimal substrates, yielding a maximum caproic acid production of 3.5 g/L. Clostridium M1NH exhibited remarkable tolerance to high concentrations of ethanol (up to 5% v/v), acetic acid (up to 5% w/v), and caproic acid (up to 2% w/v). The strain also demonstrated a wide pH tolerance range (pH 5.5-7.5) and an elevated temperature optimum between 35 and 40 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Clostridium M1NH shares a 98% similarity with Clostridium luticellarii DSM 29923 T. The robustness of strain M1NH and its efficient caproic acid production from low-cost substrates highlight its potential for sustainable bio-based chemical production. The maximum caproic acid yield achieved by Clostridium M1NH was 1.6-fold higher than that reported for C. kluyveri under similar fermentation conditions. This study opens new avenues for valorizing waste streams and advancing a circular economy model in the chemical industry.


Asunto(s)
Ácido Acético , Clostridium , Etanol , Fermentación , Filogenia , ARN Ribosómico 16S , Ácido Acético/metabolismo , Etanol/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium/clasificación , ARN Ribosómico 16S/genética , Termotolerancia , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Caprilatos/metabolismo , Temperatura , Caproatos
11.
Environ Sci Technol ; 58(26): 11514-11524, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757358

RESUMEN

PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.


Asunto(s)
Biotransformación , Nitratos , Paladio , Nitratos/metabolismo , Paladio/química , Paladio/metabolismo , Catálisis , Contaminantes Químicos del Agua/metabolismo , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Biodegradación Ambiental
12.
Int J Phytoremediation ; 26(9): 1429-1438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584457

RESUMEN

The phytoremediation potential of floating aquatic plants to accumulate and remove two common PFAS from contaminated water was investigated. Free-floating hydrophytes Eichhornia crassipes and Pistia stratiotes were grown in water spiked with 0.5, 1, or 2 ppm perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) for seven days. Both species were able to accumulate PFOA and PFOS in this time frame, with translocation factors (TF) ranging from 0.13 to 0.57 for P. stratiotes and 0.18 to 0.45 for E. stratiotes, respectively. E. crassipes accumulated a greater amount of PFOA and PFOS than P. stratiotes, with 178.9 ug PFOA and 308.5 ug PFOS removed by E. crassipes and 98.9 ug PFOA and 137.8 ug PFOS removed by P. stratiotes at the highest concentrations. Root tissue contained a higher concentration of PFOA and PFOS than shoot tissue in both species, and the concentration of PFOS was generally significantly higher than PFOA in both E. crassipes and P. stratiotes, with concentrations of 15.39 and 27.32 ppb PFOA and 17.41 and 80.62 ppb PFOS in shoots and roots of P. stratiotes and 12.59 and 37.37 ppb PFOA and 39.92 and 83.40 ppb PFOS in shoots and roots of E. crassipes, respectively. Both species may be candidates for further phytoremediation studies in aquatic ecosystems.


This study investigates the feasibility of using wetland plants for the phytoremediation of PFAS. Prior published studies examine various plant interactions with PFAS but do not evaluate remediation potential of P. stratiotes.


Asunto(s)
Ácidos Alcanesulfónicos , Araceae , Biodegradación Ambiental , Caprilatos , Eichhornia , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/metabolismo , Caprilatos/metabolismo , Eichhornia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Araceae/metabolismo
13.
Methods Enzymol ; 696: 287-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658084

RESUMEN

Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.


Asunto(s)
Biodegradación Ambiental , Fluorocarburos , Fluorocarburos/metabolismo , Fluorocarburos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caprilatos/metabolismo , Halogenación , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/química , Oxidación-Reducción
14.
J Hazard Mater ; 470: 134143, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554507

RESUMEN

To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.


Asunto(s)
Biodegradación Ambiental , Caprilatos , Fluorocarburos , Hierro , Fluorocarburos/metabolismo , Fluorocarburos/química , Caprilatos/metabolismo , Caprilatos/química , Hierro/metabolismo , Hierro/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Biotransformación , Redes Neurales de la Computación , Bacterias/metabolismo , Bacterias/genética , Pseudomonas/metabolismo , Pseudomonas/genética
15.
Environ Toxicol Chem ; 43(5): 965-975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501493

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative, and toxic synthetic chemicals of concern, which have been detected in nearly all environmental compartments. The present study provides a data analysis on PFAS concentrations in the Dutch inland and coastal national waters and fish sampled from 2008 to 2022 and 2015 to 2022, respectively. Although the fish database is relatively small, the water database is unique because of its temporal dimension. It appears that PFAS are omnipresent in Dutch water and fish, with relatively small spatial differences in absolute and relative concentrations (fingerprints) and few obvious temporal trends. Only perfluorooctanoic acid and perfluorooctanesulfonic acid (PFOS) aqueous concentrations in the rivers Rhine and Scheldt have substantially decreased since 2012. Still, PFOS concentrations exceed the European water quality standards at all and fish standards at many locations. Masses of PFAS entering the country and the North Sea are roughly 3.5 tonnes/year. Generally, the data suggest that most PFAS enter the Dutch aquatic environment predominantly through diffuse sources, yet several major point sources of specific PFAS were identified using fingerprints and monthly concentration profiles as identification tools. Finally, combining concentrations in fish and water, 265 bioaccumulation factors were derived, showing no statistically significant differences between freshwater and marine fish. Overall, the analysis provides new insights into PFAS bioaccumulation and spatiotemporal trends, mass discharges, and sources in The Netherlands. Environ Toxicol Chem 2024;43:965-975. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Peces , Fluorocarburos , Contaminantes Químicos del Agua , Países Bajos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo , Fluorocarburos/análisis , Peces/metabolismo , Animales , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Bioacumulación , Ríos/química , Caprilatos/metabolismo
16.
Toxicol In Vitro ; 97: 105810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513818

RESUMEN

Grown evidence has shown that the liver and reproductive organs were the main target organs of perfluorooctanoic acid (PFOA). Herein, we studied a toxic mechanism of PFOA using HeLa Chang liver epithelial cells. When incubated with PFOA for 24 h or 48 h, cell proliferation was inhibited in a concentration- and time-dependent fashion, but interestingly, the feature of dead cells was not notable. Mitochondrial volume was increased with concentration and time, whereas the mitochondrial membrane potential and produced ATP amounts were significantly reduced. Autophagosome-like vacuoles and contraction of the mitochondrial inner membrane were observed in PFOA-treated cells. The expression of acetyl CoA carboxylase (ACC) and p-ACC proteins rapidly decreased, and that of mitochondrial dynamics-related proteins increased. The expression of solute carrier family 7 genes, ChaC glutathione-specific gamma-glutamylcyclotransferase 1, and 5S ribosomal RNA gene was up-regulated the most in cells exposed to PFOA for 24 h, and the KEGG pathway analysis revealed that PFOA the most affected metabolic pathways and olfactory transduction. More importantly, PPAR alpha, fatty acid binding protein 1, and CYP450 family 1 subfamily A member 1 were identified as the target proteins for binding between PFOA and cells. Taken together, we suggest that disruption of mitochondrial integrity and function may contribute closely to PFOA-induced cell proliferation inhibition.


Asunto(s)
Caprilatos , Fluorocarburos , Caprilatos/metabolismo , Hígado/metabolismo , Hepatocitos , Fluorocarburos/metabolismo , Proliferación Celular
17.
Microb Cell Fact ; 23(1): 71, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419072

RESUMEN

BACKGROUND: The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids. RESULTS: Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid. CONCLUSIONS: This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacología , Ácidos Grasos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Environ Sci Process Impacts ; 26(4): 700-709, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38376352

RESUMEN

Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant. Exposure to PFOA was observed to have a correlation with the expression levels of phospholipids. However, there are currently no studies that directly visualize the effects of PFOA on phospholipids. To this end, matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-IMS) was used to visualize changes in phospholipids in the different tissues of zebrafish following exposure to PFOA. This study found that the major perturbed phospholipids were phosphatidylcholine (PC), diacylglycerol (DG), phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), and triacylglycerol (TG). These perturbed phospholipids caused by PFOA were reversible in some tissues (liver, gill, and brain) and irreversible in others (such as the highly exposed intestine). Moreover, the spatial distribution of perturbed phospholipids was mainly located around the edge or center of the tissues, implying that these tissue regions need special attention. This study provides novel insight into the biological toxicity and toxicity mechanisms induced by emerging environmental pollutants.


Asunto(s)
Caprilatos , Fluorocarburos , Fosfolípidos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Fluorocarburos/metabolismo , Fosfolípidos/metabolismo , Caprilatos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
19.
Nutr Neurosci ; 27(3): 252-261, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36800228

RESUMEN

Computer-based analysis of motility was used as a measure of amyloid-ß (Aß) proteotoxicity in the transgenic strain GMC101, expressing human Aß1-42 in body wall muscle cells. Aß-aggregation was quantified to relate the effects of caprylic acid (CA) to the amount of the proteotoxic protein. Gene knockdowns were induced through RNA-interference (RNAi). Moreover, the estimation of adenosine triphosphate (ATP) levels, the mitochondrial membrane potential (MMP) and oxygen consumption served the evaluation of mitochondrial function. CA improved the motility of GMC101 nematodes and reduced Aß aggregation. Whereas RNAi for orthologues encoding key enzymes for α-lipoic acid and ketone bodies synthesis did not affect motility stimulation by CA, knockdown of orthologues involved in ß-oxidation of fatty acids diminished its effects. The efficient energy gain by application of CA was finally proven by the increase of ATP levels in association with increased oxygen consumption and MMP. In conclusion, CA attenuates Aß proteotoxicity by supplying energy via FAO. Since especially glucose oxidation is disturbed in Alzheimer´s disease, CA could potentially serve as an alternative energy fuel.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Enfermedad de Alzheimer/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacología , Proteínas de Caenorhabditis elegans/genética , Péptidos beta-Amiloides/metabolismo , Adenosina Trifosfato/metabolismo , Modelos Animales de Enfermedad
20.
Environ Pollut ; 338: 122698, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832777

RESUMEN

Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 µM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.


Asunto(s)
Caprilatos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Femenino , Humanos , Animales , Bovinos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Caprilatos/toxicidad , Caprilatos/metabolismo , Células de la Granulosa , Mitocondrias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA