Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
1.
Plant Physiol Biochem ; 215: 108947, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106768

RESUMEN

The effectiveness of pyraclostrobin (Pyr) and azoxystrobin (Azo) with highly targeting the rice blast is noteworthy, but they have varied toxic levels towards non-target aquatic organisms. Nevertheless, the toxic selectivity and mechanism of non-target plants, specifically rice, remain uncertain. In this study, we investigated the potential phytotoxic effects of Pyr and Azo on rice seedlings, including plant morphology, plant growth, physiological and biochemical changes. The findings revealed that both Pyr and Azo caused toxic effects on rice, resulting in symptoms of chlorosis and inhibited growth. The toxicity of Azo was found to be more severe when applied at the recommended field dose. Disruption of oxidative stress could significantly impact the demonstrated levels of REC, leading to a decrease in photosynthetic pigments and potentially culminating in cell death. Furthermore, the toxic effect of Azo had a greater impact on rice leaves compared to Pyr at treatments of 400, 800, 1600, and 4000 mg/L. However, the in vitro cytotoxicity of Azo on rice leaves was lower than that of Pyr. Therefore, it can be inferred that the mechanism of phytotoxicity of Azo is directly linked to the increased accumulation of the compound on the leaf tips and edges. Additionally, the positive effects observed on plant morphology and growth parameters suggest that the mixed application of plant growth regulators (sodium nitrophenolate aqueous solution of 14 mg/L and diethyl aminoethyl hexanoat of 50 mg/L) can be a promising approach to mitigate the rice phytotoxicity of Azo at 400 and 800 mg/L.


Asunto(s)
Oryza , Hojas de la Planta , Pirimidinas , Plantones , Estrobilurinas , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Carbamatos/toxicidad , Metacrilatos/toxicidad , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Clorofila/metabolismo , Pirazoles/toxicidad , Pirazoles/farmacología
2.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955968

RESUMEN

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Asunto(s)
Bencimidazoles , Carbamatos , Ivermectina , Oligoquetos , Contaminantes del Suelo , Suelo , Animales , Oligoquetos/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Carbamatos/toxicidad , Bencimidazoles/toxicidad , Suelo/química , Contaminantes del Suelo/toxicidad , Estrés Oxidativo , Plaguicidas/toxicidad
3.
Ecotoxicol Environ Saf ; 282: 116723, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024947

RESUMEN

Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.


Asunto(s)
Fungicidas Industriales , Polen , Animales , Abejas/efectos de los fármacos , Abejas/fisiología , Fungicidas Industriales/toxicidad , Estrobilurinas/toxicidad , Alemania , Estrés Fisiológico , Néctar de las Plantas , Carbamatos/toxicidad , Microbiota/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Compuestos de Bifenilo , Niacinamida/análogos & derivados
4.
Sci Total Environ ; 948: 174578, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38981541

RESUMEN

Pesticide active ingredients are frequently detected in the rivers, creeks, wetlands, estuaries, and marine waters of the Great Barrier Reef (GBR) region and are one of the main contributors to poor water quality. Pesticide concentrations detected in the environment through water quality monitoring programs can be compared against estimates of ecologically "safe" concentrations (i.e., water quality guidelines) to assess the potential hazard and risk posed to aquatic ecosystems. Water quality guidelines are also required to estimate the aquatic risk posed by pesticide mixtures, which is used for the Reef 2050 Water Quality Improvement Plan pesticide target. Seventy-four pesticide active ingredients and their degradates are frequently detected in GBR catchment waterways, however many do not have water quality guidelines in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. The current study derives ecotoxicity threshold values (ETVs) as unendorsed guideline values for active ingredients in two fungicides (4-hydroxychlorothalonil (fungicide degradate) and carbendazim) and two insecticides (dimethoate and methoxyfenozide) that are commonly detected in GBR catchment waterways. The proposed ETVs have been derived using species sensitivity distributions, as recommended in the Australian and New Zealand nationally endorsed method for deriving water quality guidelines for aquatic ecosystem protection. Four ETVs were derived for each chemical with values that should theoretically protect 99, 95, 90 and 80 % of species (i.e., PC99, PC95, PC90, PC80, respectively). The PC99 and PC95 values for 4-hydroxychlorothalonil, carbendazim, dimethoate and methoxyfenozide were 0.49 µg/L and 4 µg/L, 0.029 µg/L and 0.45 µg/L, 0.11 µg/L and 5.8 µg/L and 0.19 µg/L and 2 µg/L, respectively. The ETVs will be used in an ecological hazard and risk assessment across GBR waterways in part two of this study. The ETVs can also be used to assess potential risk across Australia and internationally where monitoring data are available.


Asunto(s)
Carbamatos , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Carbamatos/toxicidad , Carbamatos/análisis , Agua de Mar/química , Agua Dulce/química , Australia , Insecticidas/análisis , Insecticidas/toxicidad , Fungicidas Industriales/análisis , Fungicidas Industriales/toxicidad , Nueva Zelanda , Plaguicidas/análisis , Plaguicidas/toxicidad , Medición de Riesgo , Hidrazinas/toxicidad , Hidrazinas/análisis , Bencimidazoles
5.
Environ Pollut ; 358: 124535, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002748

RESUMEN

The extensive utilization of pesticides results in their frequent detection in aquatic environments, often as complex mixtures, posing risks to aquatic organisms. The hook snout carp (Opsariichthys bidens) serves as a valuable bioindicator for evaluating the impacts of environmental pollutants in aquatic ecosystems. However, few studies examined the toxic effects of pesticides on O.bidens, let alone the characterization of the combined effects resulting from their mixtures. This study aims to elucidate the toxic effects of beta-cypermethrin and pyraclostrobin on O.bidens, individually and in combination, focusing on biochemical, transcriptional, and molecular responses. By organizing and analyzing the toxicogenomic databases, both pesticides were identified as a contributor to processes such as apoptosis, oxidative stress, and inflammatory responses. The acute toxicity test revealed comparable acute toxicity of beta-cypermethrin and pyraclostrobin on O.bidens, with LC50 being 0.019 and 0.027 mg/L, respectively, whereas the LC50 decreased to 0.0057 and 0.0079 mg/L under the combined exposure, indicating potential synergistic effects. The activities of enzymes involved in oxidative stress and detoxification were significantly altered after exposure, with superoxide dismutase (SOD) and catalase (CAT) increasing, while malondialdehyde (MDA) levels decreased. The activity of CYP450s was significantly changed. Likewise, the expression levels of genes (mn-sod, p53, esr, il-8) associated with oxidative stress, apoptosis, endocrine and immune systems were significantly increased. Combined exposure to the pesticides significantly exacerbated the aforementioned biological processes in O.bidens. Furthermore, both pesticides can modify protein activity by binding to the surface of SOD molecules and altering protein conformation, contributing to the elevated enzyme activity. Through the investigation of the synergistic toxic effects of pesticides and molecular mechanisms in O.bidens, our findings highlight the importance of assessing the combined effects of pesticide mixtures in aquatic environments.


Asunto(s)
Carpas , Piretrinas , Estrobilurinas , Contaminantes Químicos del Agua , Piretrinas/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Carpas/genética , Carpas/metabolismo , Estrobilurinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Insecticidas/toxicidad , Carbamatos/toxicidad , Pruebas de Toxicidad Aguda
6.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38922465

RESUMEN

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Asunto(s)
Bencimidazoles , Carbamatos , Fungicidas Industriales , Lactuca , Phaseolus , Estrobilurinas , Phaseolus/efectos de los fármacos , Estrobilurinas/toxicidad , Bencimidazoles/toxicidad , Fungicidas Industriales/toxicidad , Carbamatos/toxicidad , Lactuca/efectos de los fármacos , Pirimidinas/toxicidad , Clorofila/metabolismo
7.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677114

RESUMEN

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Asunto(s)
Carbón Orgánico , Compostaje , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompuestos , Microbiología del Suelo , Contaminantes del Suelo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidad , Nitrocompuestos/metabolismo , Nitrocompuestos/toxicidad , Estrobilurinas/metabolismo , Estrobilurinas/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Carbón Orgánico/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidad , Herbicidas/metabolismo , Herbicidas/toxicidad , Carbamatos/metabolismo , Carbamatos/toxicidad , Microbiota/efectos de los fármacos , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo , Pirazoles/metabolismo , Pirazoles/toxicidad , Insecticidas/metabolismo , Insecticidas/toxicidad , Biodegradación Ambiental , Suelo/química , Bacterias/metabolismo , Bacterias/efectos de los fármacos
9.
Environ Sci Pollut Res Int ; 31(14): 21781-21796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396181

RESUMEN

Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC10 and EC50 values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms. L. minor had the lowest EC10 and EC50 values for seven and five of the individual pesticides, respectively. L. minor was also one to two orders of magnitude more sensitive to the mixture compared to H. vulgaris and C. elegans, where EC50 values were calculated to be 0.00042, 0.0014, and 0.038 mM, respectively. H. vulgaris was the most sensitive species to the remaining individual pesticides, and C. elegans consistently ranked the least sensitive to all tested compounds. When comparing the EC50 values across all pesticides, the endpoints of L. minor were correlated with each other while the endpoints measured in H. vulgaris and C. elegans were clustered together. While there was no apparent relationship between the chemical class of pesticide and toxicity, the compounds were more closely clustered based on target organisms (herbicide vs insecticide). The results of this study demonstrate that the combination of these plant, soil, and aquatic specie can serve as representative indicators of pesticide pollution in environmental samples.


Asunto(s)
Araceae , Plaguicidas , Animales , Plaguicidas/toxicidad , Plaguicidas/química , Caenorhabditis elegans , Carbamatos/toxicidad , Organofosfatos , Suelo
10.
Environ Health Perspect ; 131(11): 116001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37966213

RESUMEN

BACKGROUND: Evidence of the negative impacts of contemporary use insecticides on sperm concentration has increased over the last few decades; however, meta-analyses on this topic are rare. OBJECTIVES: This investigation assessed the qualitative and quantitative strength of epidemiological evidence regarding adult exposure to two classes of contemporary use insecticides-organophosphates (OPs) and N-methyl carbamates (NMCs)-and sperm concentration using robust and reproducible systematic review and meta-analysis methods. METHODS: Three scientific databases (PubMed, Scopus, and Web of Science), two U.S. government databases (NIOSHTIC-2 and Science.gov), and five nongovernmental organization websites were searched for relevant primary epidemiological studies published in any language through 11 August 2022. Risk of bias and strength of evidence were evaluated according to Navigation Guide systematic review methodology. Bias-adjusted standardized mean difference effect sizes were calculated and pooled using a three-level, multivariate random-effect meta-analysis model with cluster-robust variance estimation. RESULTS: Across 20 studies, 21 study populations, 42 effect sizes, and 1,774 adult men, the pooled bias-adjusted standardized mean difference in sperm concentration between adult men more- and less-exposed to OP and NMC insecticides was -0.30 (95% CI: -0.49, -0.10; PSatt<0.01). Sensitivity and subgroup analyses explored statistical heterogeneity and validated the model robustness. Although the pooled effect estimate was modified by risk of bias, insecticide class, exposure setting, and recruitment setting, it remained negative in direction across all meta-analyses. The body of evidence was rated to be of moderate quality, with sufficient evidence of an association between higher adult OP and NMC insecticide exposure and lower sperm concentration. DISCUSSION: This comprehensive investigation found sufficient evidence of an association between higher OP and NMC insecticide exposure and lower sperm concentration in adults. Although additional cohort studies can be beneficial to fill data gaps, the strength of evidence warrants reducing exposure to OP and NMC insecticides now to prevent continued male reproductive harm. https://doi.org/10.1289/EHP12678.


Asunto(s)
Insecticidas , Humanos , Masculino , Adulto , Insecticidas/toxicidad , Organofosfatos/toxicidad , Semen , Carbamatos/toxicidad , Espermatozoides
11.
Clin Chim Acta ; 551: 117584, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37805177

RESUMEN

Population and food requirements are increasing daily throughout the world. To fulfil these requirements application of pesticides is also increasing. Organophosphorous (OP) and Organocarbamate (OC) compounds are widely used pesticides. These pesticides are used for suicidal purposes too. Both inhibit Acetylcholinesterase (AChE) and cholinergic symptoms are mainly used for the diagnosis of pesticide poisoning. Although the symptoms of the intoxication of OP and OC are similar, recent research has described different targets for OP and OC pesticides. Researchers believe the distinction of OP/OC poisoning will be beneficial for the management of pesticide exposure. OP compounds produce adducts with several proteins. There is a new generation of OP compounds like glyphosate that do not inhibit AChE. Therefore, it's high time to develop biomarkers that can distinguish OP poisoning from OC poisoning.


Asunto(s)
Acetilcolinesterasa , Plaguicidas , Humanos , Acetilcolinesterasa/metabolismo , Plaguicidas/toxicidad , Carbamatos/toxicidad
12.
Environ Pollut ; 325: 121437, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907237

RESUMEN

This study was carried out to provide the evidence with respect to the adverse potential of chlorpropham, a representative carbamate ester herbicide product, on the endocrine system by using in vitro testing methods in accordance with the Organization for Economic Cooperation and Development Test Guideline No. 458 (22Rv1/MMTV_GR-KO human androgen receptor [AR] transcriptional activation assay) and a bioluminescence resonance energy transfer-based AR homodimerization assay. Results revealed that chlorpropham had no AR agonistic effects, but it was determined to be a true AR antagonist without intrinsic toxicity against the applied cell lines. In the mechanism of chlorpropham-induced AR-mediated adverse effects, chlorpropham suppressed cytoplasmic AR translocation to the nucleus by inhibiting the homodimerization of the activated ARs. This suggests that chlorpropham exposure caused endocrine-disrupting effects through its interactions with human AR. Additionally, this study might help identify the genomic pathway of the AR-mediated endocrine-disrupting potential of N-phenyl carbamate herbicides.


Asunto(s)
Clorprofam , Herbicidas , Humanos , Clorprofam/metabolismo , Clorprofam/toxicidad , Herbicidas/toxicidad , Herbicidas/metabolismo , Receptores Androgénicos , Andrógenos , Carbamatos/toxicidad , Sistema Endocrino
13.
J Agric Food Chem ; 71(5): 2390-2398, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706223

RESUMEN

Isoprocarb (IPC), one of the most important carbamate pesticides, is used to control pests, such as rice planthoppers in crops. Studies have found that IPC induced hepatotoxicity in poultry chicken. However, the mechanisms of IPC-induced hepatotoxicity are unclear. The objectives of this study were to characterize reactive metabolites of IPC in vitro and in vivo, to identify cytochrome P450 enzymes for metabolic activation, and to define a possible correlation between the metabolic activation and cytotoxicity of IPC. In GSH- or NAC-supplemented microsomal incubations, one GSH conjugate (M6) and two NAC conjugates (M7 and M8) were detected after exposure to IPC. The corresponding GSH conjugate and NAC conjugates were found in the liver homogenates and urine of mice after IPC administration. IPC was found to be metabolized to a quinone intermediate reactive to GSH in vitro and in vivo. IPC was found to induce marked cytotoxicity in cultured mouse primary hepatocytes. Ketoconazole, a selective CYP3A4/5 enzyme inhibitor, attenuated the susceptibility of hepatocytes to IPC cytotoxicity.


Asunto(s)
Activación Metabólica , Carbamatos , Enfermedad Hepática Inducida por Sustancias y Drogas , Citocromo P-450 CYP3A , Microsomas Hepáticos , Animales , Ratones , Carbamatos/metabolismo , Carbamatos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glutatión/metabolismo , Microsomas Hepáticos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
14.
Food Chem ; 403: 134329, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36156404

RESUMEN

Dielectric barrier discharge (DBD) cold plasma, as a new nonthermal technology, has attracted increasing attention in pesticide degradation. In this study, DBD plasma was used to degrade carbendazim (MBC) in aqueous solution. Under the optimal conditions (160 kv, 50 Hz), MBC solution (0.5 µg/mL) was degraded by 89.04% after plasma treatment for 10 min. Four MBC degradation products were identified, one of which was a common oxidative degradation product (5-hydroxycarbendazim, m/z 208.07); the others were identified (m/z 118.06, m/z 132.08 and m/z 104.05) to have formed by the cleavage of the benzimidazole heterocyclic ring. The degradation pathways were obtained by analysis of degradation products at different treatment times. The toxicity of the degradation products was estimated based on the survival rate of yeast, indicating much lower toxicity levels compared to that of MBC. This study provides a theoretical basis for the application of DBD plasma in the degradation of benzimidazole pesticides in foods.


Asunto(s)
Gases em Plasma , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Carbamatos/toxicidad , Bencimidazoles/toxicidad , Bencimidazoles/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-36410640

RESUMEN

The introduction of pesticide resistance-inducing mutations into target genes would in theory protect honey bees from the hazardous effects of pesticides. In this paper, to screen amino acid substitutions conferring resistance to organophosphorus and carbamate insecticides, honey bee acetylcholinesterase 2 (AmAChE2) variants with several mutations (V260L, A316S, G342A, G342V, F407Y, and G342V/F407Y) were generated and expressed in vitro using a baculovirus system. The inhibition constants of recombinant native and mutated AmAChE2s against six pesticides were measured. As a result, the A316S mutation was shown to induce high resistance without a catalytic efficiency change.


Asunto(s)
Insecticidas , Plaguicidas , Abejas/genética , Animales , Insecticidas/toxicidad , Acetilcolinesterasa/metabolismo , Mutación , Carbamatos/toxicidad
16.
J Chromatogr A ; 1681: 463454, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36099696

RESUMEN

Methyl isocyanate (MIC), an intermediate in the synthesis of carbamate pesticides, is a toxic industrial chemical that causes irritation and damage to the eyes, respiratory tract, and skin. Due to the high reactivity of MIC, it binds to proteins to form protein adducts. While these adducts can be used as biomarkers to verify exposure to MIC, methods to detect MIC adducts are cumbersome, typically involving enzymatic (pronase) or strong acid (Edman degradation) hydrolysis of hemoglobin. Hence, in this study, a simple method was developed which utilizes base hydrolysis of MIC-tyrosine adducts from isolated hemoglobin to form phenyl methyl carbamate (PMC), followed by rapid liquid-liquid extraction, and liquid chromatography tandem mass spectrometry analysis. The hydrolysis chemistry is the first report of base hydrolysis of a tyrosine-ß-C-hydroxo phenol bond in aqueous solution. The method produced excellent sensitivity (detection limit of 0.02 mg/kg), linearity (R2 = 0.998, percent residual accuracies > 96), and dynamic range (0.06‒15 mg/kg). The accuracy and precision (100 ± 9% and < 10% relative standard deviation, respectively) of the method were outstanding compared to existing techniques. The validated method was able to detect significantly elevated levels of PMC from hemoglobin isolated from MIC-exposed rats.


Asunto(s)
Hemoglobinas , Plaguicidas , Animales , Biomarcadores/análisis , Carbamatos/toxicidad , Hemoglobinas/análisis , Isocianatos , Fenoles , Pronasa , Ratas , Tirosina
17.
Molecules ; 27(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36080298

RESUMEN

Compounds containing carbamate moieties and their derivatives can generate serious public health threats and environmental problems due their high potential toxicity. In this study, a quantitative structure-toxicity relationship (QSTR) model has been developed by using one hundred seventy-eight carbamate derivatives whose toxicities in rats (oral administration) have been evaluated. The QSRT model was rigorously validated by using either tested or untested compounds falling within the applicability domain of the model. A structure-based evaluation by docking from a series of carbamates with acetylcholinesterase (AChE) was carried out. The toxicity of carbamates was predicted using physicochemical, structural, and quantum molecular descriptors employing a DFT approach. A statistical treatment was developed; the QSRT model showed a determination coefficient (R2) and a leave-one-out coefficient (Q2LOO) of 0.6584 and 0.6289, respectively.


Asunto(s)
Acetilcolinesterasa , Carbamatos , Acetilcolinesterasa/metabolismo , Animales , Carbamatos/química , Carbamatos/toxicidad , Relación Estructura-Actividad Cuantitativa , Ratas
18.
Environ Toxicol Chem ; 41(12): 3046-3057, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36165561

RESUMEN

The acetylcholinesterase (AChE) inhibition assay has been frequently applied for environmental monitoring to capture insecticides such as organothiophosphates (OTPs) and carbamates. However, natural organic matter such as dissolved organic carbon (DOC) co-extracted with solid-phase extraction from environmental samples can produce false-negative AChE inhibition in free enzyme-based AChE assays. We evaluated whether disturbance by DOC can be alleviated in a cell-based AChE assay using differentiated human neuroblastoma SH-SY5Y cells. The exposure duration was set at an optimum of 3 h considering the effects of OTPs and carbamates. Because loss to the airspace was expected for the more volatile OTPs (chlorpyrifos, diazinon, and parathion), the chemical loss in this bioassay setup was investigated using solid-phase microextraction followed by chemical analysis. The three OTPs were relatively well retained (loss <34%) during 3 h of exposure in the 384-well plate, but higher losses occurred on prolonged exposure, accompanied by slight cross-contamination of adjacent wells. Inhibition of AChE by paraoxon-ethyl was not altered in the presence of up to 68 mgc /L Aldrich humic acid used as surrogate for DOC. Binary mixtures of paraoxon-ethyl and water extracts showed concentration-additive effects. These experiments confirmed that the matrix in water extracts does not disturb the assay, unlike purified enzyme-based AChE assays. The cell-based AChE assay proved to be suitable for testing water samples with effect concentrations causing 50% inhibition of AChE at relative enrichments of 0.5-10 in river water samples, which were distinctly lower than corresponding cytotoxicity, confirming the high sensitivity of the cell-based AChE inhibition assay and its relevance for water quality monitoring. Environ Toxicol Chem 2022;41:3046-3057. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Insecticidas , Neuroblastoma , Humanos , Acetilcolinesterasa , Paraoxon/toxicidad , Calidad del Agua , Insecticidas/toxicidad , Organotiofosfatos , Carbamatos/toxicidad , Inhibidores de la Colinesterasa/toxicidad
19.
Toxicology ; 480: 153322, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115648

RESUMEN

In November 2019, for the first time in the history of the Chemical Weapons Convention, changes were made to Schedule 1 of the Annex on Chemicals. While there is little in the scientific literature regarding any of these newly scheduled chemicals, the carbamates, specifically, prove to be substantially different, both in terms of their chemical composition and their toxicological effects, from all the other scheduled nerve agents and have yet to be fully reported on in the literature. Herein, we present a literature review of the available information on carbamates included in Schedule 1, as well as analogous other carbamates, and provide a summary of their utility and function as cholinesterase inhibitors in general and their toxicities. Though there is a paucity of studies in the literature related to the detection of these newly scheduled quaternary and bisquaternary carbamates and/or their biomarkers, information available on carbamate pesticides may be a solid starting point to further postulate amenable detection methodologies. Lastly, we note some implications of these newly scheduled carbamates for the nonproliferation and disarmament community.


Asunto(s)
Agentes Nerviosos , Plaguicidas , Carbamatos/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Plaguicidas/toxicidad
20.
Sci Rep ; 12(1): 9986, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705592

RESUMEN

Widespread application of carbendazim (CBZ) is a major environmental impact because of its residues that caused multi-organ dysfunction. Recently, Chitosan nanoparticles (CS-NPs) are extensively used as nanocarriers due to their non-toxic and biodegradable nature. Therefore, the current study aimed to investigate the possible mechanistic pathway of modified CS-NPs to reduce the hepatic and nephrotoxicity of CBZ in rats. CS-NPs were synthesized by the ionic gelation method by using ascorbic acid instead of acetic acid to increase its antioxidant efficiency. Twenty-adult male Wistar rats were grouped (n = 5) as follows: Group (1) negative control, group (2) received CS-NPs, group (3) received CBZ, and group (4) co-administered CS-NPs with CBZ. Rats received the aforementioned materials daily by oral gavage for 28 days and weighed weekly. The results revealed that CBZ receiving group showed severe histopathological alterations in the liver and kidney sections including cellular necrosis and interstitial inflammation confirmed by immunostaining and showed marked immunopositivity of iNOS and caspase-3 protein. There were marked elevations in the serum levels of ALT, AST, urea, and creatinine with a significant increase in MDA levels and decrease in TAC levels. Upregulation of the Keap1 gene and down-regulation of Nrf2 and HO-1 genes were also observed. Co-treatment of rats by CS-NPs with CBZ markedly improved all the above-mentioned toxicological parameters and return liver and kidney tissues to normal histological architecture. We concluded that CBZ caused hepatorenal toxicity via oxidative stress and the Nrf2/HO-1 pathway and CS-NPs could reduce CBZ toxicity via their antioxidant, anti-apoptotic, and anti-inflammatory effects.


Asunto(s)
Quitosano , Riñón , Hígado , Nanopartículas , Animales , Masculino , Ratas , Antioxidantes/farmacología , Bencimidazoles/toxicidad , Carbamatos/toxicidad , Quitosano/química , Quitosano/farmacología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nanopartículas/química , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas Wistar , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA