Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.080
1.
PLoS Biol ; 22(5): e3002592, 2024 May.
Article En | MEDLINE | ID: mdl-38691548

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Arabidopsis , Carbon Dioxide , Models, Biological , Plant Stomata , Signal Transduction , Plant Stomata/drug effects , Plant Stomata/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Computer Simulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
2.
Malar J ; 23(1): 100, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589884

BACKGROUND: Anopheles gambiae, the major malaria mosquito in sub-Saharan Africa, feed largely indoors at night. Raising a house off the ground with no barriers underneath reduces mosquito-house entry. This experiment tested whether walling off the space under an elevated hut affects mosquito-hut entry. METHODS: Four inhabited experimental huts, each of which could be moved up and down, were used in rural Gambia. Nightly collections of mosquitoes were made using light traps and temperature and carbon dioxide levels monitored indoors and outdoors using loggers. Each night, a reference hut was kept at ground level and three huts raised 2 m above the ground; with the space under the hut left open, walled with air-permeable walls or solid walls. Treatments were rotated every four nights using a randomized block design. The experiment was conducted for 32 nights. Primary measurements were mosquito numbers and indoor temperature in each hut. RESULTS: A total of 1,259 female Anopheles gambiae sensu lato were collected in the hut at ground level, 655 in the hut with an open ground floor, 981 in the hut with air-permeable walls underneath and 873 in the hut with solid walls underneath. Multivariate analysis, adjusting for confounders, showed that a raised hut open underneath had 53% fewer mosquitoes (95% CI 47-58%), those with air-permeable walls underneath 24% fewer (95% CI 9-36%) and huts with solid walls underneath 31% fewer (95% CI 24-37%) compared with a hut on the ground. Similar results were found for Mansonia spp. and total number of female mosquitoes, but not for Culex mosquitoes where hut entry was unaffected by height or barriers. Indoor temperature and carbon dioxide levels were similar in all huts. CONCLUSION: Raising a house 2 m from the ground reduces the entry of An. gambiae and Mansonia mosquitoes, but not Culex species. The protective effect of height is reduced if the space underneath the hut is walled off.


Anopheles , Culex , Insecticides , Animals , Female , Gambia , Carbon Dioxide/pharmacology , Mosquito Control/methods , Mosquito Vectors , Insecticides/pharmacology
3.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575849

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Atmosphere , Carbon Dioxide , Cellulose , Fabaceae , Oxygen Isotopes , Plant Leaves , Poaceae , Water , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Cellulose/metabolism , Poaceae/drug effects , Poaceae/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Fabaceae/drug effects , Fabaceae/physiology , Fabaceae/metabolism , Atmosphere/chemistry , Plant Stomata/drug effects , Plant Stomata/physiology
4.
Compr Rev Food Sci Food Saf ; 23(3): e13345, 2024 05.
Article En | MEDLINE | ID: mdl-38638070

Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.


Carbon Dioxide , Comprehension , Microbial Viability , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Colony Count, Microbial , Food Handling/methods
5.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38577951

BACKGROUND: Anxiety disorders are highly prevalent and socio-economically costly. Novel pharmacological treatments for these disorders are needed because many patients do not respond to current agents or experience unwanted side effects. However, a barrier to treatment development is the variable and large placebo response rate seen in trials of novel anxiolytics. Despite this, the mechanisms that drive placebo responses in anxiety disorders have been little investigated, possibly due to low availability of convenient experimental paradigms. We aimed to develop and test a novel protocol for inducing placebo anxiolysis in the 7.5% CO2 inhalational model of generalized anxiety in healthy volunteers. METHODS: Following a baseline 20-minute CO2 challenge, 32 healthy volunteers were administered a placebo intranasal spray labelled as either the anxiolytic "lorazepam" or "saline." Following this, participants surreptitiously underwent a 20-minute inhalation of normal air. Post-conditioning, a second dose of the placebo was administered, after which participants completed another CO2 challenge. RESULTS: Participants administered sham "lorazepam" reported significant positive expectations of reduced anxiety (P = .001), but there was no group-level placebo effect on anxiety following CO2 challenge post-conditioning (Ps > .350). Surprisingly, we found many participants exhibited unexpected worsening of anxiety, despite positive expectations. CONCLUSIONS: Contrary to our hypothesis, our novel paradigm did not induce a placebo response, on average. It is possible that effects of 7.5% CO2 inhalation on prefrontal cortex function or behavior in line with a Bayesian predictive coding framework attenuated the effect of expectations on subsequent placebo response. Future studies are needed to explore these possibilities.


Anti-Anxiety Agents , Anxiety , Carbon Dioxide , Placebo Effect , Humans , Carbon Dioxide/administration & dosage , Carbon Dioxide/pharmacology , Male , Female , Adult , Young Adult , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/administration & dosage , Administration, Inhalation , Anxiety/drug therapy , Anxiety/chemically induced , Lorazepam/pharmacology , Lorazepam/administration & dosage , Double-Blind Method
6.
Int J Food Microbiol ; 416: 110658, 2024 May 02.
Article En | MEDLINE | ID: mdl-38484608

Fusarium asiaticum is a predominant fungal pathogen causing Fusarium Head Blight (FHB) in wheat and barley in China and is associated with approximately £201 million in annual losses due to grains contaminated with mycotoxins. F. asiaticum produces deoxynivalenol and zearalenone whose maximum limits in cereals and cereals-derived products have been established in different countries including the EU. Few studies are available on the ecophysiological behaviour of this fungal pathogen, but nothing is known about the impact of projected climate change scenarios on its growth and mycotoxin production. Therefore, this study aimed to examine the interacting effect of i) current and increased temperature (25 vs 30 °C), ii) drought stress variation (0.98 vs 0.95 water activity; aw) and iii) existing and predicted CO2 concentrations (400 vs 1000 ppm) on fungal growth and mycotoxin production (type B trichothecenes and zearalenone) by three F. asiaticum strains (CH024b, 82, 0982) on a wheat-based matrix after 10 days of incubation. The results showed that, when exposed to increased CO2 concentration (1000 ppm) there was a significant reduction of fungal growth compared to current concentration (400 ppm) both at 25 and 30 °C, especially at 0.95 aw. The multi-mycotoxin analysis performed by LC-MS/MS qTRAP showed a significant increase of deoxynivalenol and 15-acetyldeoxynivalenol production when the CH024b strain was exposed to elevated CO2 compared to current CO2 levels. Zearalenone production by the strain 0982 was significantly stimulated by mild water stress (0.95 aw) and increased CO2 concentration (1000 ppm) regardless of the temperature. Such results highlight that intraspecies variability exist among F. asiaticum strains with some mycotoxins likely to exceed current EU legislative limits under prospected climate change conditions.


Fusarium , Mycotoxins , Trichothecenes , Zearalenone , Mycotoxins/analysis , Zearalenone/analysis , Triticum/microbiology , Carbon Dioxide/pharmacology , Chromatography, Liquid , Climate Change , Tandem Mass Spectrometry , Edible Grain/microbiology
7.
Article En | MEDLINE | ID: mdl-38513801

Climatic events are affecting the Amazon basin and according to projections it is predicted the intensification of climate changes through increases in temperature and carbon dioxide (CO2). Recent evidence has revealed that exposure to an extreme climate scenario elicits oxidative damage in some fish species, impairing their metabolism and physiology, contributing to their susceptibility. Thus, the comprehension of physiological alterations in Arapaima gigas (pirarucu) to the climatic changes forecasted for the next 100 years is important to evaluate its capability to deal with oxidative stress. The objective of this work was to determine whether antioxidant defense system is able to prevent muscle oxidative damage of pirarucu exposed 96 h to extreme climate scenario, as well as the effects of this exposition on muscle fatty acid levels. Lipid peroxidation and reactive oxygen species significantly increase in the muscle of pirarucus exposed to an extreme climate scenario compared to control, while muscle superoxide dismutase, catalase, and glutathione peroxidase were significantly lower. Total amount of saturated fatty acids (SFAs) was significantly higher in pirarucu exposed to an extreme climate scenario compared to control, while total content of monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs) was significantly lower. Exposure to an extreme climate scenario causes muscular oxidative stress and that the antioxidant systems are inefficient to avoid oxidative damage. In addition, the increase of total SFAs and the decrease of MUFAs and PUFAs probably intend to maintain membrane fluidity while facing high temperature and CO2 levels.


Antioxidants , Fatty Acids , Animals , Antioxidants/metabolism , Temperature , Carbon Dioxide/pharmacology , Oxidative Stress , Fishes/metabolism , Fatty Acids, Unsaturated
8.
Mar Pollut Bull ; 201: 116284, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522335

Antioxidant responses of juvenile sole exposed to seawater acidification (SA) and Cd were investigated. SA increased lipid peroxidation (LPO) in the fish, independent of Cd concentrations. Cd at medium and high levels inflated LPO under no or moderate SA conditions. This effect was absent under high SA levels, due to SA effect exceeding and obscuring Cd effect. SA and Cd collaborated to provoke LPO, with SOD and CAT being stimulated to defend against oxidative stress, while those related to GSH redox cycle were inhibited under SA exposure. Responses of GSH-related antioxidants to Cd impact varied contingent on their interactions with SA. This defensive strategy was insufficient to protect fish from increased LPO. Antioxidants responded more sensitively to SA than Cd exposure. GSH, GR, SOD and CAT are sensitive biomarkers for SA conditions. The findings offer insights into assessing fish's antioxidant defense strategy under Cd and SA circumstances in natural habitats.


Antioxidants , Cadmium , Animals , Antioxidants/metabolism , Cadmium/toxicity , Carbon Dioxide/pharmacology , Ocean Acidification , Glutathione/metabolism , Oxidative Stress , Lipid Peroxidation , Superoxide Dismutase/metabolism
9.
Int Tinnitus J ; 27(2): 174-182, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38507632

BACKGROUND: Laparoscopic cholecystectomy is a proper treatment for cholecystitis but the Carbon dioxide gas which is used in surgery stimulates the sympathetic system and causes hemodynamic changes and postoperative shivering in patients undergoing operations. This study was conducted to evaluate the effects of clonidine on reducing hemodynamic changes during tracheal intubation and Carbon dioxide gas insufflation and postoperative shivering in patients undergoing laparoscopic cholecystectomy. MATERIAL AND METHODS: This prospective, randomized, triple-blind clinical trial was conducted on 60 patients between the 18-70 years-old age group, who were candidates of laparoscopic cholecystectomy surgery. The patients randomized into two groups (30 patients received 150 µg oral clonidine) and 30 patients received 100 mg oral Vitamin C). Heart rate and mean arterial pressure of patients were recorded before anesthesia, before and after laryngoscopy, before and after Carbon dioxide gas insufflation. Data were analyzed using Chi-2, student t-test, and analysis of variance by repeated measure considering at a significant level less than 0.05. RESULTS: The findings of this study showed that both heart rate and mean arterial pressure in clonidine group after tracheal intubation and Carbon dioxide gas insufflation were lower than patients in the placebo group, but there was not any statistically significant difference between the two groups (p>0.05) and also postoperative shivering was not different in groups. There was no significant statistical difference in postoperative shivering between the two groups (p>0.05). CONCLUSION: Using 150 µg oral clonidine as a cheap and affordable premedication in patients undergoing laparoscopic cholecystectomy improves hemodynamic stability during operation.


Cholecystectomy, Laparoscopic , Insufflation , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Clonidine/therapeutic use , Clonidine/pharmacology , Cholecystectomy, Laparoscopic/adverse effects , Insufflation/adverse effects , Shivering , Carbon Dioxide/pharmacology , Prospective Studies , Hemodynamics , Premedication , Intubation
10.
J Insect Sci ; 24(2)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38491952

Modified atmosphere is effective in controlling Tribolium castaneum Herbst, but it has adaptations. Comprehending the potential mechanism of resistance to T. castaneum in a modified atmosphere will help advance related management methods. This study conducted a comparative transcriptomic and metabolomic analysis to understand the physiological mechanism of T. castaneum in adapting to CO2 stress. Results showed that there were a large number of differentially expressed genes (DEGs) in T. castaneum treated with different concentrations of CO2. Gene ontology (GO) analysis revealed significant enrichment of DEGs mainly in binding, catalytic activity, cell, membrane, membrane part, protein-containing complex, biological regulation, and cellular and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that different treatments had different effects on the metabolic pathways of T. castaneum. DEGs induced by 25% CO2 were involved in arginine and proline metabolism, and 50% air + 50% CO2 treatment affected most kinds of metabolic pathways, mainly the signal transduction pathway, including PI3K-Akt signaling pathway, AMPK signaling pathway, neurotrophin signaling pathway, insulin signaling pathway, and thyroid hormone signaling. Ribosome and DNA replication were enriched under high CO2 stress (75% and 95%). The metabolomics revealed that different concentrations of CO2 treatments might inhibit the growth of T. castaneum through acidosis, or they may adapt to anoxic conditions through histamine and N-acetylhistamine. Multiple analyses have shown significant changes in histamine and N-acetylhistamine levels, as well as their associated genes, with increasing CO2 concentration. In conclusion, this study comprehensively revealed the molecular mechanism of T. castaneum responding to CO2 stress and provided the basis for an effectively modified atmosphere in the T. castaneum.


Coleoptera , Histamine/analogs & derivatives , Tribolium , Animals , Coleoptera/genetics , Tribolium/genetics , Histamine/pharmacology , Carbon Dioxide/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Gene Expression Profiling
11.
New Phytol ; 242(3): 1333-1347, 2024 May.
Article En | MEDLINE | ID: mdl-38515239

Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.


Microbiota , Mycorrhizae , Tracheophyta , Ecosystem , Carbon Dioxide/pharmacology , Plants , Trees , Soil , Soil Microbiology , Plant Roots
12.
Plant Physiol Biochem ; 208: 108465, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422577

The concentration of atmospheric carbon dioxide (CO2) has increased drastically over the past several decades, resulting in the pH of the ocean decreasing by 0.44 ± 0.005 units, known as ocean acidification (OA). The Kappaphycus alvarezii (Rhodophyta, Solieriaceae), is a commercially and ecologically important red macroalga with significant CO2 absorption potential from seawater. The K. alvarezii also experienced light variations from self-shading and varied cultivation depths. Thus, the aim of present study was to investigate the effects of two pCO2 levels (450 and 1200 ppmv) and three light intensities (50, 100, and 150 µmol photons·m-2·s-1) on photosynthesis and the biochemical components in K. alvarezii. The results of the present study showed that a light intensity of 50 µmol photons·m-2·s-1 was optimal for K. alvarezii photosynthesis with 0.663 ± 0.030 of Fv/Fm and 0.672 ± 0.025 of Fv'/Fm'. Phycoerythrin contents at two pCO2 levels decreased significantly with an increase in light intensity by 57.14-87.76%, while phycocyanin contents only decreased from 0.0069 ± 0.001 mg g-1 FW to 0.0047 ± 0.001 mg g-1 FW with an increase in light intensity at 1200 ppmv of pCO2. Moreover, moderate increases in light intensity and pCO2 had certain positive effects on the physiological performance of K. alvarezii, specifically in terms of increasing soluble carbohydrate production. Although OA and high light levels promoted total organic carbon accumulation (21.730 ± 0.205% DW) in K. alvarezii, they had a negative impact on total nitrogen accumulation (0.600 ± 0.017% DW).


Edible Seaweeds , Rhodophyta , Seaweed , Seawater/chemistry , Hydrogen-Ion Concentration , Carbon Dioxide/pharmacology , Ocean Acidification , Photosynthesis
13.
mSystems ; 9(3): e0133123, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38376262

The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.


Mycorrhizae , Mycorrhizae/genetics , Ecosystem , Carbon Dioxide/pharmacology , Soil Microbiology , Plants/microbiology , Extreme Environments
14.
Psychopharmacology (Berl) ; 241(3): 627-635, 2024 Mar.
Article En | MEDLINE | ID: mdl-38363344

RATIONALE: Although the study of emotions can look back to over 100 years of research, it is unclear which information the brain uses to construct the subjective experience of an emotion. OBJECTIVE: In the current study, we assess the role of the peripheral and central adrenergic system in this respect. METHODS: Healthy volunteers underwent a double inhalation of 35% CO2, which is a well-validated procedure to induce an intense emotion, namely panic. In a randomized, cross-over design, 34 participants received either a ß1-blocker acting selectively in the peripheral nervous system (atenolol), a ß1-blocker acting in the peripheral and central nervous system (metoprolol), or a placebo before the CO2 inhalation. RESULTS: Heart rate and systolic blood pressure were reduced in both ß-blocker conditions compared to placebo, showing effective inhibition of the adrenergic tone. Nevertheless, the subjective experience of the induced panic was the same in all conditions, as measured by self-reported fear, discomfort, and panic symptom ratings. CONCLUSIONS: These results indicate that information from the peripheral and central adrenergic system does not play a major role in the construction of the subjective emotion.


Adrenergic beta-Antagonists , Carbon Dioxide , Emotions , Nervous System , Panic , Humans , Adrenergic beta-Antagonists/pharmacology , Carbon Dioxide/pharmacology , Emotions/drug effects , Emotions/physiology , Fear/drug effects , Fear/physiology , Heart Rate/drug effects , Panic/drug effects , Panic/physiology , Nervous System/drug effects
15.
Ecotoxicol Environ Saf ; 273: 116024, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38394753

Excessive carbon emissions, especially CO2 release, have been a global concern. Few studies applied nanotechnology to relieve the ecotoxicity of CO2. Here, we applied carbon dots (CDs) to neutralize the CO2. We found CO2 induced the aggregation of CDs, which is of significance for CDs in enhanced fluorescence intensity but decreased CDs function in nanozyme activity, and reduced CDs toxicity to bacteria and cancer cells. Our data suggest the concern of CO2 release in global health in CDs mediated anticancer drug delivery and antibiotics resistance. However, enhanced fluorescence in cells which can be applied for bioimaging or CO2 sensing as simulated investigation by static charged attraction of positively charged CDs with negatively charged soluble HCO3-. Thus, CO2 abrogates the nanomedicine efficacy in cancer cells and antibacterial and may induce drug resistance for patients undergoing chemotherapy or antibiotics therapy. To overcome the resistance, we may apply the CDs for a neutralization of CO2 for impact on anticancer nanomedicine and antibiotics and reducing the ecotoxicity in biological systems.


Nanoparticles , Quantum Dots , Humans , Anti-Bacterial Agents/pharmacology , Carbon Dioxide/pharmacology , Nanomedicine , Drug Delivery Systems/methods
16.
Sci Total Environ ; 921: 171173, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38401718

The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.


Carbon Dioxide , Ecosystem , Carbon Dioxide/pharmacology , Temperature , Vapor Pressure , Gases , Photosynthesis , Carbon Isotopes/analysis , Water
17.
J Biomed Mater Res B Appl Biomater ; 112(1): e35356, 2024 01.
Article En | MEDLINE | ID: mdl-38247241

Sterilization of structural bone allografts is a critical process prior to their clinical use in large cortical bone defects. Gamma irradiation protocols are known to affect tissue integrity in a dose dependent manner. Alternative sterilization treatments, such as supercritical carbon dioxide (SCCO2 ), are gaining popularity due to advantages such as minimal exposure to denaturants, the lack of toxic residues, superior tissue penetration, and minor impacts on mechanical properties including strength and stiffness. The impact of SCCO2 on the fracture toughness of bone tissue, however, remains unknown. Here, we evaluate crack initiation and growth toughness after 2, 6, and 24 h SCCO2 -treatment using Novakill™ and ethanol as additives on ~11 samples per group obtained from a pair of femur diaphyses of a canine. All mechanical testing was performed at ambient air after 24 h soaking in Hanks' balanced salt solution (HBSS). Results show no statistically significant difference in the failure characteristics of the Novakill™-treated groups whereas crack growth toughness after 6 and 24 h of treatment with ethanol significantly increases by 37% (p = .010) and 34% (p = .038), respectively, compared to an untreated control group. In contrast, standard 25 kGy gamma irradiation causes significantly reduced crack growth resistance by 40% (p = .007) compared to untreated bone. FTIR vibrational spectroscopy, conducted after testing, reveals a consistent trend of statistically significant differences (p < .001) with fracture toughness. These trends align with variations in the ratios of enzymatic mature to immature crosslinks in the collagen structure, suggesting a potential association with fracture toughness. Additional Raman spectroscopy after testing shows a similar trend with statistically significant differences (p < .005), which further supports that collagen structural changes occur in the SCF-treated groups with ethanol after 6 and 24 h. Our work reveals the benefits of SCCO2 sterilization compared to gamma irradiation.


Carbon Dioxide , Fractures, Bone , Animals , Dogs , Carbon Dioxide/pharmacology , Ethanol/pharmacology , Bone and Bones , Cortical Bone , Collagen/pharmacology
18.
Fish Shellfish Immunol ; 146: 109366, 2024 Mar.
Article En | MEDLINE | ID: mdl-38218419

Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomics, proteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunity. Hemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.


Crassostrea , Seawater , Animals , Seawater/chemistry , Crassostrea/metabolism , Hydrogen-Ion Concentration , Proteomics , Immunosuppression Therapy , Gene Expression Profiling , Carbon Dioxide/pharmacology
19.
JCI Insight ; 9(4)2024 Jan 16.
Article En | MEDLINE | ID: mdl-38227369

Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3) - a mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila - is expressed in mouse and human macrophages. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury, and mortality in hypercapnic mice infected with influenza A virus. To our knowledge, our results establish Zfhx3 as the first known mammalian mediator of CO2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung disease.


Influenza A virus , Lung Diseases , Animals , Humans , Mice , Carbon Dioxide/pharmacology , Drosophila , Homeodomain Proteins/genetics , Hypercapnia , Lung , Macrophages , Mammals
20.
Environ Sci Pollut Res Int ; 31(5): 8164-8185, 2024 Jan.
Article En | MEDLINE | ID: mdl-38172319

Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundinacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated ambient CO2 (700 ppm) and Epichloë endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, chlorophyll (a & b), and carotenoid contents were measured after 7 months of growth in pots. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloë endophyte. Using Taguchi and AIC design methodologies, it was also predicted that the most critical factors affecting Cd phytoremediation potential were CO2 concentration and plant genotype.


Epichloe , Festuca , Soil Pollutants , Humans , Biodegradation, Environmental , Cadmium/analysis , Endophytes , Carbon Dioxide/pharmacology , Soil , Soil Pollutants/analysis , Plant Roots
...