Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55.018
1.
PLoS One ; 19(5): e0300749, 2024.
Article En | MEDLINE | ID: mdl-38723036

This paper aims to re-examine the dietary practices of individuals buried at Sigatoka Sand Dunes site (Fiji) in Burial Ground 1 excavated by Simon Best in 1987 and 1988 using two approaches and a reassessment of their archaeological, bioarchaeological and chronological frame. First, stable carbon and nitrogen isotope analysis was applied to document dietary changes between childhood and adulthood using an intra-individual approach on paired bone-tooth. Second, the potential adaptation of the individuals to their environment was evaluated through regional and temporal comparisons using inter-individual bone analysis. Ten AMS radiocarbon dates were measured directly on human bone collagen samples, placing the series in a range of approximately 600 years covering the middle of the first millennium CE (1,888 to 1,272 cal BP). δ13C and δ15N ratios were measured on bone and tooth collagen samples from 38 adult individuals. The results show that δ15N values from tooth are higher than those s from bone while bone and tooth δ13C values are similar, except for females. Fifteen individuals were included in an intra-individual analysis based on paired bone and tooth samples, which revealed six dietary patterns distinguished by a differential dietary intake of marine resources and resources at different trophic levels. These highlight sex-specific differences not related to mortuary practices but to daily life activities, supporting the hypothesis of a sexual division of labour. Compared to other Southwest Pacific series, Sigatoka diets show a specific trend towards marine food consumption that supports the hypothesis of a relative food self-sufficiency requiring no interactions with other groups.


Bone and Bones , Burial , Carbon Isotopes , Nitrogen Isotopes , Humans , Carbon Isotopes/analysis , Female , Nitrogen Isotopes/analysis , Male , Burial/history , Bone and Bones/chemistry , Adult , Fiji , Archaeology , Diet/history , Collagen , History, Ancient , Tooth/chemistry , Child , Radiometric Dating/methods
2.
Sci Rep ; 14(1): 11074, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745048

Medieval Iberia witnessed the complex negotiation of religious, social, and economic identities, including the formation of religious orders that played a major role in border disputes and conflicts. While archival records provide insights into the compositions of these orders, there have been few direct dietary or osteoarchaeological studies to date. Here, we analysed 25 individuals discovered at the Zorita de los Canes Castle church cemetery, Guadalajara, Spain, where members of one of the first religious orders, the Order of Calatrava knights, were buried between the 12th to 15th centuries CE. Stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of bone collagen reveal dietary patterns typical of the Medieval social elite, with the Bayesian R model, 'Simmr' suggesting a diet rich in poultry and marine fish in this inland population. Social comparisons and statistical analyses further support the idea that the order predominantly comprised the lower nobility and urban elite in agreement with historical sources. Our study suggests that while the cemetery primarily served the order's elite, the presence of individuals with diverse dietary patterns may indicate complexities of temporal use or wider social interaction of the medieval military order.


Carbon Isotopes , Nitrogen Isotopes , Humans , Spain , History, Medieval , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Bone and Bones/chemistry , Archaeology , Military Personnel/history , Diet/history , Male , Female , Social Class/history , Cemeteries/history , Collagen/analysis , Bayes Theorem
3.
Commun Biol ; 7(1): 568, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745082

Interpretations of Late Pleistocene hominin adaptative capacities by archaeologists have focused heavily on their exploitation of certain prey and documented contemporary behaviours for these species. However, we cannot assume that animal prey-taxa ecology and ethology were the same in the past as in the present, or were constant over archaeological timescales. Sequential isotope analysis of herbivore teeth has emerged as a particularly powerful method of directly reconstructing diet, ecology and mobility patterns on sub-annual scales. Here, we apply 87Sr/86Sr isotope analysis, in combination with δ18O and δ13C isotope analysis, to sequentially sampled tooth enamel of prevalent herbivore species that populated Europe during the Last Glacial Period, including Rangifer tarandus, Equus sp. and Mammuthus primigenius. Our samples come from two open-air archaeological sites in Central Germany, Königsaue and Breitenbach, associated with Middle Palaeolithic and early Upper Palaeolithic cultures, respectively. We identify potential inter- and intra-species differences in range size and movement through time, contextualised through insights into diet and the wider environment. However, homogeneous bioavailable 87Sr/86Sr across large parts of the study region prevented the identification of specific migration routes. Finally, we discuss the possible influence of large-herbivore behaviour on hominin hunting decisions at the two sites.


Carbon Isotopes , Herbivory , Animals , Carbon Isotopes/analysis , Fossils , Hominidae/physiology , Strontium Isotopes/analysis , Archaeology , Europe , Animal Migration , Dental Enamel/chemistry , Diet , Germany , Oxygen Isotopes/analysis
4.
PLoS One ; 19(5): e0302334, 2024.
Article En | MEDLINE | ID: mdl-38748638

Susceptibility to morbidity and mortality is increased in early life, yet proactive measures, such as breastfeeding and weaning practices, can be taken through specific investments from parents and wider society. The extent to which such biosocialcultural investment was achieved within 1st millennium BCE Etruscan society, of whom little written sources are available, is unkown. This research investigates life histories in non-adults and adults from Pontecagnano (southern Italy, 730-580 BCE) in order to track cross-sectional and longitudinal breastfeeding and weaning patterns and to characterize the diet more broadly. Stable carbon and nitrogen isotope analysis of incrementally-sampled deciduous and permanent dentine (n = 15), bulk bone collagen (n = 38), and tooth enamel bioapatite (n = 21) reveal the diet was largely based on C3 staple crops with marginal contributions of animal protein. Millet was found to play a role for maternal diet and trajectories of breastfeeding and feeding for some infants and children at the site. The combination of multiple isotope systems and tissues demonstrates exclusive breastfeeding was pursued until 0.6 years, followed by progressive introduction of proteanocius supplementary foods during weaning that lasted between approximately 0.7 and 2.6 years. The combination of biochemical data with macroscopic skeletal lesions of infantile metabolic diseases and physiological stress markers showed high δ15Ndentine in the months prior to death consistent with the isotopic pattern of opposing covariance.


Bone and Bones , Carbon Isotopes , Diet , Nitrogen Isotopes , Humans , Italy , Infant , Diet/history , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , History, Ancient , Bone and Bones/chemistry , Female , Paleopathology , Adult , Weaning , Breast Feeding/history , Stress, Physiological , Dentin/chemistry , Dentin/metabolism , Collagen/metabolism , Collagen/analysis , Child, Preschool , Male , Child
5.
Sci Rep ; 14(1): 11146, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750037

Ecological applications of compound-specific stable isotope analysis (CSIA) of amino acids (AAs) include 1) tracking carbon pathways in food webs using essential AA (AAESS) δ13C values, and 2) estimating consumer trophic position (TP) by comparing relative differences of 'trophic' and 'source' AA δ15N values. Despite the significance of these applications, few studies have examined AA-specific SI patterns among tissues with different AA compositions and metabolism/turnover rates, which could cause differential drawdown of body AA pools and impart tissue-specific isotopic fractionation. To address this knowledge gap, especially in the absence of controlled diet studies examining this issue in captive marine mammals, we used a paired-sample design to compare δ13C and δ15N values of 11 AAs in commonly sampled tissues (skin, muscle, and dentine) from wild beluga whales (Delphinapterus leucas). δ13C of two AAs, glutamic acid/glutamine (Glx, a non-essential AA) and, notably, threonine (an essential AA), differed between skin and muscle. Furthermore, δ15N of three AAs (alanine, glycine, and proline) differed significantly among the three tissues, with glycine δ15N differences of approximately 10 ‰ among tissues supporting recent findings it is unsuitable as a source AA. Significant δ15N differences in AAs such as proline, a trophic AA used as an alternative to Glx in TP estimation, highlight tissue selection as a potential source of error in ecological applications of CSIA-AA. Amino acids that differed among tissues play key roles in metabolic pathways (e.g., ketogenic and gluconeogenic AAs), pointing to potential physiological applications of CSIA-AA in studies of free-ranging animals. These findings underscore the complexity of isotopic dynamics within tissues and emphasize the need for a nuanced approach when applying CSIA-AA in ecological research.


Amino Acids , Beluga Whale , Carbon Isotopes , Nitrogen Isotopes , Animals , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Amino Acids/metabolism , Amino Acids/analysis , Beluga Whale/metabolism , Food Chain , Skin/metabolism , Skin/chemistry
6.
Microbiome ; 12(1): 90, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750595

BACKGROUND: Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS: Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS: Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.


Carbon Isotopes , Gastrointestinal Microbiome , Metabolomics , Muscle, Skeletal , Animals , Mice , Metabolomics/methods , Carbon Isotopes/metabolism , Male , Muscle, Skeletal/metabolism , Female , Brain/metabolism , Liver/metabolism , Choline/metabolism , Mice, Inbred C57BL , Humans , Fatty Acids, Volatile/metabolism
7.
J Environ Manage ; 359: 121004, 2024 May.
Article En | MEDLINE | ID: mdl-38710146

In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.


Aerosols , Carbon Dioxide , Carbon Isotopes , Particulate Matter , Carbon Dioxide/analysis , China , Particulate Matter/analysis , Aerosols/analysis , Carbon Isotopes/analysis , Coal , Air Pollutants/analysis , Carbon/analysis , Humans , Family Characteristics , Rural Population , Environmental Monitoring
8.
Appl Microbiol Biotechnol ; 108(1): 318, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700733

DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucose containing 13C at six levels, and DNA was then extracted after a 7-day incubation and subjected to isopycnic gradient centrifugation. The results showed that the amount of labelled DNA was notably related to the 13C-glucose percentage, while the separation spans of 18S rRNA and 16S rRNA genes between labelled and unlabelled treatments became notably clearer when the δ13C values of the total DNA were 90.9, 61.6, and 38.9‰ and 256.2, 104.5 and 126.1‰ in the AQ, CZ, and NB soils, respectively. Moreover, fractionated DNA was also labelled by determining the δ13C values while adding only 5 atom% 13C-glucose to the soil. The results suggest that the optimal labelling fractions were not always those fractions with the maximal gene abundance, and detecting the δ13C values of the total and fractionated DNA was beneficial in estimating the results of DNA-SIP. KEY POINTS: • Appropriate 13C-DNA amount was needed for DNA-SIP. • Detecting the 13C ratio of fractionated DNA directly was an assistant method for identifying the labelled fractions. • Fractions with the maximal 18S or 16S rRNA gene abundance always were not labelled.


Carbon Isotopes , DNA, Bacterial , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Carbon Isotopes/analysis , DNA, Bacterial/genetics , RNA, Ribosomal, 18S/genetics , Ultracentrifugation , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Isotope Labeling/methods , Glucose/metabolism
9.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38700127

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Carbon Isotopes , Charadriiformes , Feathers , Nitrogen Isotopes , Sulfur Isotopes , Animals , Feathers/chemistry , Sulfur Isotopes/analysis , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Charadriiformes/physiology , Charadriiformes/metabolism , Mass Spectrometry/methods
10.
Geobiology ; 22(3): e12597, 2024.
Article En | MEDLINE | ID: mdl-38700422

Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.


Biota , Fossils , Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/analysis , Carbon Isotopes/analysis , Yukon Territory , Newfoundland and Labrador , Paleontology , Northwest Territories
11.
Sci Adv ; 10(20): eadm8096, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758798

Organic matter (OM) transformations in marine sediments play a crucial role in the global carbon cycle. However, secondary production and priming have been ignored in marine biogeochemistry. By incubating shelf sediments with various 13C-labeled algal substrates for 400 days, we show that ~65% of the lipids and ~20% of the proteins were mineralized by numerically minor heterotrophic bacteria as revealed by RNA stable isotope probing. Up to 11% of carbon from the algal lipids was transformed into the biomass of secondary producers as indicated by 13C incorporation in amino acids. This biomass turned over throughout the experiment, corresponding to dynamic microbial shifts. Algal lipid addition accelerated indigenous OM degradation by 2.5 to 6 times. This priming was driven by diverse heterotrophic bacteria and sulfur- and iron-cycling bacteria and, in turn, resulted in extra secondary production, which exceeded that stimulated by added substrates. These interactions between degradation, secondary production, and priming govern the eventual fate of OM in marine sediments.


Geologic Sediments , Geologic Sediments/chemistry , Biomass , Bacteria/metabolism , Carbon Cycle , Carbon/metabolism , Carbon/chemistry , Carbon Isotopes , Lipids/chemistry , Organic Chemicals/chemistry
12.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38701928

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Diet , Euphausiacea , Humpback Whale , Animals , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Antarctic Regions , Fatty Acids/analysis , Climate Change
13.
PLoS One ; 19(4): e0298593, 2024.
Article En | MEDLINE | ID: mdl-38557862

The Xiongnu polity (ca. 200 BC- 150 AD) emerged out of indigenous community-centered socio-political structures to forge a powerful state that commanded the Mongolian steppe and beyond. Underpinned by a highly mobile pastoralist population, accustomed to seasonally rhythmic moves and embedded in an equestrian culture that facilitated rapid transport over long-distances, it remains unclear precisely how the movement of commoners, local aristocrats and regional elites abetted the formation and organization of Xiongnu state structures. Here, we evaluate Xiongnu movement and dietary intake through multi-stable isotopic analyses of tooth enamel from directly dated Xiongnu intermediate elites recovered from the mortuary center of Baga Gazaryn Chuluu-a prominent granite outcrop set in the Gobi Desert. Carbon isotope (δ13C) analysis indicates millet was consumed by some individuals, but whether or not this C4 cultivar contributed to the diets of most elites remains ambiguous in this C3/C4 desert-steppe environment. The effectiveness of oxygen isotopes (δ18O) to establish mobility appears much reduced in steppe environments, where geospatially sensitive information appears disrupted by extraordinary seasonality in meteoric water oxygen isotopes, pronounced oxygen isotopic variation in potential drinking water sources, and culturally mediated drinking practices. Most revealing, strontium isotopes (87Sr/86Sr) indicate circulation of local elites around this central place and beyond, a mobility format that helped leaders cement their own position through political consolidation of spatially dispersed mobile pastoralist communities. The consistent presence at Baga Gazaryn Chuluu of extra-local intermediate elites also points toward the importance of transregional mobility in binding together the Xiongnu polity over the vast distances of the eastern steppe.


Strontium Isotopes , Humans , Carbon Isotopes/chemistry , Oxygen Isotopes
14.
PLoS One ; 19(4): e0299786, 2024.
Article En | MEDLINE | ID: mdl-38568879

The feeding strategies of the first domesticated herds had to manage the risks arising from the novelty of livestock practices in territories often distant from the animals' primary habitats. The Iberian Peninsula is characterised by a great diversity of environments, which undoubtedly influenced these dynamics. At the beginning of the Neolithic period these led the possibility to combine diverse livestock farming practices based on different animal feeding habits. This variability is also consistent with the rythms of adoption of domesticated animals, being later on the northern area. In order to address this issue, this work focuses on the dietary regimes of early sheep herds from southern Iberia, an area for which information is currently scarce. This study utilises high-resolution radiocarbon dating and stable isotope data on teeth to investigate sheep husbandry management strategies in Cueva de El Toro (Antequera, Málaga). The radiocarbon dates on the analysed remains evidenced they were deposited at the site over a short period, supporting the recurrent use of the cave. The sequential analysis of oxygen and carbon isotopes in tooth enamel reveals distinct livestock management strategies, reproduction patterns, feeding habits, and mobility during this short period. This variability demonstrates that livestock management practices in the western Mediterranean are more diverse than previously considered. Furthermore, these findings support the hypothesis that early Neolithic communities in the southern Iberian Peninsula were able to adopt different feeding strategies within the same herd, depending on their ecological and productive needs.


Agriculture , Livestock , Animals , Sheep , Carbon Isotopes , Oxygen , Farms
15.
Wei Sheng Yan Jiu ; 53(2): 282-287, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38604965

OBJECTIVE: To evaluate the changes in protein requirements of the elderly during the past five years. METHODS: Based on the previous study of protein requirements of 14 elderly in 2017, 4 of these elderly(70-80 y) were included as study participants and protein requirements were re-evaluated using the indicator amino acid oxidation method. There were seven protein levels: 0.1, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 g/(kg·d). Maintenance diets were given for the first two days of each protein level. A stable isotope study was conducted on the day 3, using L-~(13)C-phenylalanine as an indicator on the basis of an amino acid rationed diet, which was orally ingested into the body along with the amino acid rationed diet, and breath and urine samples were collected when the metabolism of L-~(13)C-phenylalanine reached steady state in the body. By measuring the kinetic parameters of labeled amino acids in the samples, a nonlinear mixed-effects model was constructed for the protein intake to be tested and the oxidation rate of labeled amino acids. The mean protein requirement of the study population was determined by the protein intake corresponding to the inflection point of the curve. RESULTS: Based on the production rate of ~(13)CO_2 in exhaled breath of four elderly people at different protein levels, the mean protein requirement was 1.05(95%CI 0.51-1.60) g/(kg·d). The protein recommended nutrient intake was 1.31(95%CI 0.64-2.00) g/(kg·d) was estimated by applying the coefficient of variation of the mean protein requirement to derive the recommended nutrient intake. CONCLUSION: Protein requirements in the elderly have increased over a five-year period and sarcopenia may be the main cause of increased protein requirements.


Amino Acids , Dietary Proteins , Humans , Aged , Carbon Isotopes , Oxidation-Reduction , Phenylalanine/chemistry , Phenylalanine/metabolism , Nutritional Requirements
16.
Sci Total Environ ; 927: 172164, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38580112

Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.


Carbon Isotopes , Carbon , Nitrogen Isotopes , Nitrogen , Soil , Trees , Nitrogen/metabolism , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Carbon/metabolism , Soil/chemistry , Picea , Species Specificity , Abies , Acer , Plant Roots/metabolism , Fertilizers
17.
Chemosphere ; 357: 142067, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643845

The active denitrifying communities performing methane oxidation coupled to denitrification (MOD) were investigated using samples from an aerobic reactor (∼20% O2 and 2% CH4) and a microaerobic reactor (2% O2, 2% CH4) undertaking denitrification. The methane oxidation metabolites excreted in the reactors were acetate, methanol, formate and acetaldehyde. Using anaerobic batch experiments supplemented with exogenously supplied 13C-labelled metabolites, the active denitrifying bacteria were identified using 16S rRNA amplicon sequencing and RNA-stable isotope probing (RNA-SIP). With the aerobic reactor (AR) samples, the maximum NO3- removal rates were 0.43 mmol g-1 d-1, 0.40 mmol g-1 d-1, 0.33 mmol g-1 d-1 and 0.10 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively, while with the microaerobic reactor (MR) samples, the maximum NO3- removal rates were 0.41 mmol g-1 d-1, 0.33 mmol g-1 d-1, 0.38 mmol g-1 d-1 and 0.14 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively. The RNA-SIP experiments with 13C-labelled acetate, formate, and methanol identified Methyloversatilis, and Hyphomicrobium as the active methane-driven denitrifying bacteria in the AR samples, while Pseudoxanthomonas, Hydrogenophaga and Hyphomicrobium were the active MOD bacteria in the MR samples. Collectively, all the data indicate that formate is a key cross-feeding metabolite excreted by methanotrophs and consumed by denitrifiers performing MOD.


Bioreactors , Denitrification , Methane , Oxidation-Reduction , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bioreactors/microbiology , Carbon Isotopes , Formates/metabolism , Methane/metabolism , Methanol/metabolism , Microbiota , RNA, Ribosomal, 16S/genetics
18.
Analyst ; 149(10): 2833-2841, 2024 May 13.
Article En | MEDLINE | ID: mdl-38587502

Sensing and visualization of metabolites and metabolic pathways in situ are significant requirements for tracking their spatiotemporal dynamics in a non-destructive manner. The shikimate pathway is an important cellular mechanism that leads to the de novo synthesis of many compounds containing aromatic rings of high importance such as phenylalanine, tyrosine, and tryptophan. In this work, we present a cost-effective and extraction-free method based on the principles of stable isotope-coupled Raman spectroscopy and hyperspectral Raman imaging to monitor and visualize the activity of the shikimate pathway. We also demonstrated the applicability of this approach for nascent aromatic amino acid localization and tracking turnover dynamics in both prokaryotic and eukaryotic model systems. This method can emerge as a promising tool for both qualitative and semi-quantitative in situ metabolomics, contributing to a better understanding of aromatic ring-containing metabolite dynamics across various organisms.


Shikimic Acid , Spectrum Analysis, Raman , Shikimic Acid/metabolism , Shikimic Acid/analysis , Shikimic Acid/analogs & derivatives , Spectrum Analysis, Raman/methods , Hyperspectral Imaging/methods , Isotope Labeling/methods , Carbon Isotopes/chemistry , Escherichia coli/metabolism
19.
Chemosphere ; 358: 142170, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679177

1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.


Biodegradation, Environmental , Propane , Propane/metabolism , Propane/analogs & derivatives , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Groundwater/microbiology , Groundwater/chemistry , Chlorine/metabolism , Chlorine/chemistry , Carbon Isotopes , Halogenation , Chloroflexi/metabolism , Chemical Fractionation , 2,4-Dichlorophenoxyacetic Acid/analogs & derivatives
20.
Methods Mol Biol ; 2790: 163-211, 2024.
Article En | MEDLINE | ID: mdl-38649572

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.


Carbon Isotopes , Photosynthesis , Models, Biological , Carbon Dioxide/metabolism , Plants/metabolism
...