Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.484
1.
Nat Commun ; 15(1): 4151, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755154

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Carbon Monoxide , Hydrogen , Methane , Oxidation-Reduction , Methane/metabolism , Carbon Monoxide/metabolism , Hydrogen/metabolism , Atmosphere/chemistry , Air , Nitrogen/metabolism , Greenhouse Gases/metabolism
2.
PLoS One ; 19(5): e0302653, 2024.
Article En | MEDLINE | ID: mdl-38748750

Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.


Carbon Monoxide , Disease Models, Animal , Animals , Swine , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Heart Arrest/therapy , Out-of-Hospital Cardiac Arrest/therapy , Male , Cardiopulmonary Resuscitation/methods
3.
J Chem Inf Model ; 64(10): 4193-4203, 2024 May 27.
Article En | MEDLINE | ID: mdl-38728115

[NiFe] hydrogenases can act as efficient catalysts for hydrogen oxidation and biofuel production. However, some [NiFe] hydrogenases are inhibited by gas molecules present in the environment, such as O2 and CO. One strategy to engineer [NiFe] hydrogenases and achieve O2- and CO-tolerant enzymes is by introducing point mutations to block the access of inhibitors to the catalytic site. In this work, we characterized the unbinding pathways of CO in the complex with the wild-type and 10 different mutants of [NiFe] hydrogenase from Desulfovibrio fructosovorans using τ-random accelerated molecular dynamics (τRAMD) to enhance the sampling of unbinding events. The ranking provided by the relative residence times computed with τRAMD is in agreement with experiments. Extensive data analysis of the simulations revealed that from the two bottlenecks proposed in previous studies for the transit of gas molecules (residues 74 and 122 and residues 74 and 476), only one of them (residues 74 and 122) effectively modulates diffusion and residence times for CO. We also computed pathway probabilities for the unbinding of CO, O2, and H2 from the wild-type [NiFe] hydrogenase, and we observed that while the most probable pathways are the same, the secondary pathways are different. We propose that introducing mutations to block the most probable paths, in combination with mutations to open the main secondary path used by H2, can be a feasible strategy to achieve CO and O2 resistance in the [NiFe] hydrogenase from Desulfovibrio fructosovorans.


Hydrogenase , Molecular Dynamics Simulation , Hydrogenase/metabolism , Hydrogenase/chemistry , Hydrogenase/antagonists & inhibitors , Carbon Monoxide/metabolism , Desulfovibrio/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mutation , Oxygen/metabolism , Protein Conformation
4.
J Nanobiotechnology ; 22(1): 277, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783332

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.


Gasotransmitters , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Humans , Animals , Gasotransmitters/therapeutic use , Gasotransmitters/metabolism , Nitric Oxide/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Carbon Monoxide/metabolism , Carbon Monoxide/therapeutic use , Oxygen/metabolism , Spinal Cord , Hydrogen/therapeutic use , Hydrogen/pharmacology
5.
Microb Cell Fact ; 23(1): 125, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698392

BACKGROUND: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. RESULTS: We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. CONCLUSION: The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.


Fermentation , Hydrogen , Oxygen , Hydrogen/metabolism , Oxygen/metabolism , Carbon Monoxide/metabolism , Anaerobiosis , Biomass , Gases/metabolism
6.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700010

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Antibiotics, Antineoplastic , Carbon Monoxide , Cardiotoxicity , Doxorubicin , Membrane Proteins , Animals , Doxorubicin/toxicity , Carbon Monoxide/metabolism , Antibiotics, Antineoplastic/toxicity , Female , Administration, Oral , Mice , Heme Oxygenase-1/metabolism , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/metabolism , Heart Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Carboxyhemoglobin/metabolism , Ventricular Function, Left/drug effects , Humans
7.
Microbiol Res ; 284: 127727, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636241

Heme oxygenase HO-1 (HMOX) regulates cellular inflammation and apoptosis, but its role in regulation of autophagy in Mycoplasma bovis infection is unknown. The objective was to determine how the HO-1/CO- Protein kinase RNA-like endoplasmic reticulum kinase (PERK)-Ca2+- transcription factor EB (TFEB) signaling axis induces autophagy and regulates clearance of M. bovis by bovine mammary epithelial cells (bMECs). M. bovis inhibited autophagy and lysosomal biogenesis in bMECs and suppressed HO-1 protein and expression of related proteins, namely nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (keap1). Activation of HO-1 and its production of carbon monoxide (CO) were required for induction of autophagy and clearance of intracellular M. bovis. Furthermore, when HO-1 was deficient, CO sustained cellular autophagy. HO-1 activation increased intracellular calcium (Ca2+) and cytosolic localization activity of TFEB via PERK. Knockdown of PERK or chelation of intracellular Ca2+ inhibited HO-1-induced M. bovis autophagy and clearance. M. bovis infection affected nuclear localization of lysosomal TFEB in the MiT/TFE transcription factor subfamily, whereas activation of HO-1 mediated dephosphorylation and intranuclear localization of TFEB, promoting autophagy, lysosomal biogenesis and autophagic clearance of M. bovis. Nuclear translocation of TFEB in HO-1 was critical to induce M. bovis transport and survival of infected bMECs. Furthermore, the HO-1/CO-PERK-Ca2+-TFEB signaling axis induced autophagy and M. bovis clearance, providing a viable approach to treat persistent M. bovis infections.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Calcium , Cell Nucleus , Endoplasmic Reticulum , Epithelial Cells , Mammary Glands, Animal , Mycoplasma bovis , Animals , Cattle , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Calcium/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Endoplasmic Reticulum/metabolism , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/metabolism , Cell Nucleus/metabolism , Female , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/metabolism , Lysosomes/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Carbon Monoxide/metabolism , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
8.
Free Radic Biol Med ; 220: 67-77, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38657755

Sarcopenia is characterized by loss of muscle strength and muscle mass with aging. The growing number of sarcopenia patients as a result of the aging population has no viable treatment. Exercise maintains muscle strength and mass by increasing peroxisome growth factor activating receptor γ-conjugating factor-1α (PGC-1α) and Akt signaling in skeletal muscle. The present study focused on the carbon monoxide (CO), endogenous activator of PGC-1α and Akt, and investigated the therapeutic potential of CO-loaded red blood cells (CO-RBCs), which is bioinspired from in vivo CO delivery system, as an exercise mimetic for the treatment of sarcopenia. Treatment of C2C12 myoblasts with the CO-donor increased the protein levels of PGC-1α which enhanced mitochondrial biogenesis and energy production. The CO-donor treatment also activated Akt, indicating that CO promotes muscle synthesis. CO levels were significantly elevated in the skeletal muscle of normal mice after intravenous administration of CO-RBCs. Furthermore, CO-RBCs restored the mRNA expression levels of PGC-1α in the skeletal muscle of two experimental sarcopenia mouse models, denervated (Den) and hindlimb unloading (HU) models. CO-RBCs also restored muscle mass in Den mice by activating Akt signaling and suppressing the muscle atrophy factors myostatin and atrogin-1, and oxidative stress. Treadmill tests further showed that the reduced running distance in HU mice was significantly restored by CO-RBC administration. These findings suggest that CO-RBCs have potential as an exercise mimetic for sarcopenia treatment.


Carbon Monoxide , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sarcopenia , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/therapy , Sarcopenia/pathology , Animals , Mice , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Proto-Oncogene Proteins c-akt/metabolism , Humans , Cell- and Tissue-Based Therapy/methods , Signal Transduction/drug effects , Male , Disease Models, Animal , Myoblasts/metabolism , Myoblasts/drug effects , Physical Conditioning, Animal , Mice, Inbred C57BL , Cell Line , Muscle Proteins/metabolism , Muscle Proteins/genetics
9.
Microb Biotechnol ; 17(4): e14452, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568755

Gas fermentation of CO2 and H2 is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO to ethanol and presents an opportunity for CO2-to-ethanol processes. As we have previously characterized its CO2/H2 chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO2/H2. Seven ALE lineages were generated, all with improved specific growth rates. ALE conducted in the presence of 2% CO along with CO2/H2 generated Evolved lineage D, which showed the highest ethanol titres amongst all the ALE lineages during the fermentation of CO2/H2. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Multi-omics analyses at steady state revealed that Evolved D has widespread proteome and intracellular metabolome changes. However, the uptake and production rates and titres remain unaltered until investigating their maximum dilution rate. Yet, we provide numerous insights into CO2/H2 metabolism via these multi-omics data and link these results to mutations, suggesting novel targets for metabolic engineering in this bacterium.


Carbon Dioxide , Clostridium , Proteome , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Hydrogen/metabolism , Fermentation , Ethanol/metabolism , Metabolome
10.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38625060

High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.


Bacteria , Desert Climate , Hot Springs , Oxidation-Reduction , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hot Springs/microbiology , Carbon Monoxide/metabolism , Hydrogen/metabolism , Microbiota , Altitude , Soil/chemistry
11.
Redox Biol ; 72: 103153, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608580

Carbon monoxide (CO), a gaseous signaling molecule, has shown promise in preventing body weight gain and metabolic dysfunction induced by high fat diet (HFD), but the mechanisms underlying these effects are largely unknown. An essential component in response to HFD is the gut microbiome, which is significantly altered during obesity and represents a target for developing new therapeutic interventions to fight metabolic diseases. Here, we show that CO delivered to the gut by oral administration with a CO-releasing molecule (CORM-401) accumulates in faeces and enriches a variety of microbial species that were perturbed by a HFD regimen. Notably, Akkermansia muciniphila, which exerts salutary metabolic effects in mice and humans, was strongly depleted by HFD but was the most abundant gut species detected after CORM-401 treatment. Analysis of bacterial transcripts revealed a restoration of microbial functional activity, with partial or full recovery of the Krebs cycle, ß-oxidation, respiratory chain and glycolysis. Mice treated with CORM-401 exhibited normalization of several plasma and fecal metabolites that were disrupted by HFD and are dependent on Akkermansia muciniphila's metabolic activity, including indoles and tryptophan derivatives. Finally, CORM-401 treatment led to an improvement in gut morphology as well as reduction of inflammatory markers in colon and cecum and restoration of metabolic profiles in these tissues. Our findings provide therapeutic insights on the efficacy of CO as a potential prebiotic to combat obesity, identifying the gut microbiota as a crucial target for CO-mediated pharmacological activities against metabolic disorders.


Carbon Monoxide , Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Animals , Gastrointestinal Microbiome/drug effects , Mice , Obesity/metabolism , Obesity/drug therapy , Obesity/microbiology , Carbon Monoxide/metabolism , Diet, High-Fat/adverse effects , Administration, Oral , Akkermansia/drug effects , Male , Feces/microbiology , Disease Models, Animal , Mice, Inbred C57BL
12.
Waste Manag ; 182: 250-258, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38677142

Carbon monoxide (CO) formation has been observed during composting of various fractions of organic waste. It was reported that this production can be biotic, associated with the activity of microorganisms. However, there are no sources considering the microbial communities producing CO production in compost. This preliminary research aimed to isolate and identify microorganisms potentially responsible for the CO production in compost collected from two areas of the biowaste pile: with low (118 ppm) and high CO concentration (785 ppm). Study proved that all isolates were bacterial strains with the majority of rod-shaped Gram-positive bacteria. Both places can be inhabited by the same bacterial strains, e.g. Bacillus licheniformis and Paenibacillus lactis. The most common were Bacillus (B. licheniformis, B. haynesii, B. paralicheniformis, and B. thermolactis). After incubation of isolates in sealed bioreactors for 4 days, the highest CO levels in the headspace were recorded for B. paralicheniformis (>1000 ppm), B. licheniformis (>800 ppm), and G. thermodenitrificans (∼600 ppm). High CO concentrations were accompanied by low O2 (<6%) and high CO2 levels (>8%). It is recommended to analyze the expression of the gene encoding CODH to confirm or exclude the ability of the identified strains to convert CO2 to CO.


Carbon Monoxide , Composting , Carbon Monoxide/metabolism , Carbon Monoxide/analysis , Soil Microbiology , Bacillus/metabolism , Bacillus/genetics , Bacillus/isolation & purification , Bioreactors/microbiology , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
13.
Appl Microbiol Biotechnol ; 108(1): 258, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466440

Environmental concerns about residues and the traditional disposal methods are driving the search for more environmentally conscious processes, such as pyrolysis and gasification. Their main final product is synthesis gas (syngas) composed of CO, CO2, H2, and methane. Syngas can be converted into various products using CO-tolerant microorganisms. Among them, Rhodospirillum rubrum is highlighted for its biotechnological potential. However, the extent to which high doses of CO affect its physiology is still opaque. For this reason, we have studied R. rubrum behavior under high levels of this gas (up to 2.5 bar), revealing a profound dependence on the presence or absence of light. In darkness, the key variable affected was the lag phase, where the highest levels of CO retarded growth to more than 20 days. Under light, R. rubrum ability to convert CO into CO2 and H2 depended on the presence of an additional carbon source, such as acetate. In those conditions where CO was completely exhausted, CO2 fixation was unblocked, leading to a diauxic growth. To enhance R. rubrum tolerance to CO in darkness, a UV-accelerated adaptive laboratory evolution (UVa-ALE) trial was conducted to isolate clones with shorter lag phases, resulting in the isolation of clones 1.4-2B and 1.7-2A. The adaptation of 1.4-2B was mainly based on mutated enzymes with a metabolic function, while 1.7-3A was mostly affected at regulatory genes, including the anti-repressor PpaA/AerR. Despite these mutations having slight effects on biomass and pigment levels, they successfully provoked a significant reduction in the lag phase (-50%). KEYPOINTS: • CO affects principally R. rubrum lag phase (darkness) and growth rate (light) • CO is converted to CO2/H2 during acetate uptake and inhibits CO2 fixation (light) • UVa-ALE clones showed a 50% reduction in the lag phase (darkness).


Carbon Monoxide , Rhodospirillum rubrum , Carbon Monoxide/metabolism , Rhodospirillum rubrum/genetics , Rhodospirillum rubrum/metabolism , Carbon Dioxide/metabolism , Acetates/metabolism
14.
Exp Physiol ; 109(5): 652-661, 2024 May.
Article En | MEDLINE | ID: mdl-38532277

Many patients exhibit persistently reduced pulmonary diffusing capacity after coronavirus disease 2019 (COVID-19). In this study, dual test gas diffusing capacity for carbon monoxide and nitric oxide (DL,CO,NO) metrics and their relationship to disease severity and physical performance were examined in patients who previously had COVID-19. An initial cohort of 148 patients diagnosed with COVID-19 of all severities between March 2020 and March 2021 had a DL,CO,NO measurement performed using the single-breath method at 5.7 months follow-up. All patients with at least one abnormal DL,CO,NO metric (n = 87) were revaluated at 12.5 months follow-up. The DL,CO,NO was used to provide the pulmonary diffusing capacity for nitric oxide (DL,NO), the pulmonary diffusing capacity for carbon monoxide (DL,CO,5s), the alveolar-capillary membrane diffusing capacity and the pulmonary capillary blood volume. At both 5.7 and 12.5 months, physical performance was assessed using a 30 s sit-to-stand test and the 6 min walk test. Approximately 60% of patients exhibited a severity-dependent decline in at least one DL,CO,NO metric at 5.7 months follow-up. At 12.5 months, both DL,NO and DL,CO,5s had returned towards normal but still remained abnormal in two-thirds of the patients. Concurrently, improvements in physical performance were observed, but with no apparent relationship to any DL,CO,NO metric. The severity-dependent decline in DL,NO and DL,CO observed at 5.7 months after COVID-19 appears to be reduced consistently at 12.5 months follow-up in the majority of patients, despite marked improvements in physical performance.


COVID-19 , Carbon Monoxide , Nitric Oxide , Pulmonary Diffusing Capacity , Humans , COVID-19/physiopathology , Carbon Monoxide/metabolism , Male , Female , Nitric Oxide/metabolism , Middle Aged , Prospective Studies , Aged , SARS-CoV-2 , Lung/physiopathology , Adult
15.
J Chem Theory Comput ; 20(10): 4229-4238, 2024 May 28.
Article En | MEDLINE | ID: mdl-38400860

Carbon monoxide (CO) is a byproduct of the incomplete combustion of carbon-based fuels, such as wood, coal, gasoline, or natural gas. As incomplete combustion in a fire accident or in an engine, massively produced CO leads to a serious life threat because CO competes with oxygen (O2) binding to hemoglobin and makes people suffer from hypoxia. Although there is hyperbaric O2 therapy for patients with CO poisoning, the nanoscale mechanism of CO dissociation in the O2-rich environment is not completely understood. In this study, we construct the classical force field parameters compatible with the CHARMM for simulating the coordination interactions between hemoglobin, CO, and O2, and use the force field to reveal the impact of O2 on the binding strength between hemoglobin and CO. Density functional theory and Car-Parrinello molecular dynamics simulations are used to obtain the bond energy and equilibrium geometry, and we used machine learning enabled via a feedforward neural network model to obtain the classical force field parameters. We used steered molecular dynamics simulations with a force field to characterize the mechanical strength of the hemoglobin-CO bond before rupture under different simulated O2-rich environments. The results show that as O2 approaches the Fe2+ of heme at a distance smaller than ∼2.8 Å, the coordination bond between CO and Fe2+ is reduced to 50% bond strength in terms of the peak force observed in the rupture process. This weakening effect is also shown by the free energy landscape measured by our metadynamics simulation. Our work suggests that the O2-rich environment around the hemoglobin-CO bond effectively weakens the bonding, so that designing of O2 delivery vector to the site is helpful for alleviating CO binding, which may shed light on de novo drug design for CO poisoning.


Carbon Monoxide , Hemoglobins , Molecular Dynamics Simulation , Oxygen , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Oxygen/chemistry , Oxygen/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Density Functional Theory , Humans , Protein Binding
16.
ACS Chem Biol ; 19(3): 725-735, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38340055

With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.


Heme Oxygenase-1 , Organometallic Compounds , Humans , Heme Oxygenase-1/metabolism , HeLa Cells , NF-E2-Related Factor 2/metabolism , Organometallic Compounds/pharmacology , Cell Culture Techniques , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism
17.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338958

The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro. Circadian dependency and the involvement of CD36 were analyzed in PMG isolated from control mice and CD36-/- mice and by RNA interference targeting Per-2. In vivo investigations, including phagocytosis, vasospasm, microglia activation and spatial memory, were conducted in an SAH model using control and CD36-/- mice at different zeitgeber times (ZT). In vitro, the surface expression of CD36 and its dependency on CO and phagocytosis occurred with changed circadian gene expression. CD36-/- PMG exhibited altered circadian gene expression, phagocytosis and impaired responsiveness to CO. In vivo, control mice with SAH demonstrated circadian dependency in microglia activation, erythrophagocytosis and CO-mediated protection at ZT2, in contrast to CD36-/- mice. Our study indicates that circadian rhythmicity modulates microglial activation and subsequent CD36-dependent phagocytosis. CO altered circadian-dependent neuroprotection and CD36 induction, determining the functional outcome in a hemorrhagic stroke model. This study emphasizes how circadian rhythmicity influences neuronal damage after neurovascular events.


Hemorrhagic Stroke , Lymphohistiocytosis, Hemophagocytic , Subarachnoid Hemorrhage , Mice , Animals , Microglia/metabolism , Carbon Monoxide/metabolism , Neuroprotection , Phagocytosis/physiology , Subarachnoid Hemorrhage/metabolism
18.
BMC Plant Biol ; 24(1): 97, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38331770

BACKGROUND: Drought is thought to be a major abiotic stress that dramatically limits tomato growth and production. As signal molecule, melatonin (MT) and carbon monoxide (CO) can enhance plant stress resistance. However, the effect and underlying mechanism of CO involving MT-mediated drought resistance in seedling growth remains unknown. In this study, tomato (Solanum lycopersicum L. 'Micro-Tom') seedlings were used to investigate the interaction and mechanism of MT and CO in response to drought stress. RESULTS: The growth of tomato seedlings was inhibited significantly under drought stress. Exogenous MT or CO mitigated the drought-induced impairment in a dose-dependent manner, with the greatest efficiency provided by 100 and 500 µM, respectively. But application of hemoglobin (Hb, a CO scavenger) restrained the positive effects of MT on the growth of tomato seedlings under drought stress. MT and CO treatment promoted chlorophyll a (Chl a) and chlorophyll a (Chl b) accumulations. Under drought stress, the intermediate products of chlorophyll biosynthesis such as protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX), potochlorophyllide (Pchlide) and heme were increased by MT or CO, but uroporphyrinogen III (Uro III) content decreased in MT-treated or CO-treated tomato seedlings. Meanwhile, MT or CO up-regulated the expression of chlorophyll and heme synthetic-related genes SlUROD, SlPPOX, SlMGMT, SlFECH, SlPOR, SlChlS, and SlCAO. However, the effects of MT on chlorophyll biosynthesis were almost reversed by Hb. CONCLUSION: The results suggested that MT and CO can alleviate drought stress and facilitate the synthesis of Chl and heme in tomato seedlings. CO played an essential role in MT-enhanced drought resistance via facilitating chlorophyll biosynthesis pathway.


Melatonin , Solanum lycopersicum , Chlorophyll/metabolism , Melatonin/metabolism , Seedlings/metabolism , Solanum lycopersicum/genetics , Chlorophyll A/metabolism , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Drought Resistance , Heme/metabolism , Heme/pharmacology
19.
Biotechnol Bioeng ; 121(4): 1325-1335, 2024 Apr.
Article En | MEDLINE | ID: mdl-38265153

Syngas fermentation has gained momentum over the last decades. The cost-efficient design of industrial-scale bioprocesses is highly dependent on quantitative microbial growth data. Kinetic and stoichiometric models for syngas-converting microbes exist, but accurate experimental validation of the derived parameters is lacking. Here, we describe a novel experimental approach for measuring substrate uptake kinetics of gas-fermenting microbes using the model microorganism Clostridium autoethanogenum. One-hour disturbances of a steady-state chemostat bioreactor with increased CO partial pressures (up to 1.2 bar) allowed for measurement of biomass-specific CO uptake- and CO2 production rates ( q CO ${q}_{{CO}}$ , q CO 2 ${q}_{{{CO}}_{2}}$ ) using off-gas analysis. At a pCO of 1.2 bar, a q CO ${q}_{{CO}}$ of -119 ± 1 mmol g-1 X h-1 was measured. This value is 1.8-3.5-fold higher than previously reported experimental and kinetic modeling results for syngas fermenters. Analysis of the catabolic flux distribution reveals a metabolic shift towards ethanol production at the expense of acetate at pCO ≥ $\ge $ 0.6 atm, likely to be mediated by acetate availability and cellular redox state. We characterized this metabolic shift as acetogenic overflow metabolism. These results provide key mechanistic understanding of the factors steering the product spectrum of CO fermentation in C. autoethanogenum and emphasize the importance of dedicated experimental validation of kinetic parameters.


Carbon Monoxide , Gases , Carbon Monoxide/metabolism , Fermentation , Clostridium/metabolism , Acetates/metabolism
20.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38279276

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.


Escherichia coli Proteins , Escherichia coli , Carbon Monoxide/pharmacology , Carbon Monoxide/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Cytochromes/genetics , Cytochromes/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Respiration
...