Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 189(3): 1345-1362, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35385114

RESUMEN

Triacylglycerols (TAGs) are the main storage lipids in photosynthetic organisms under stress. In the oleaginous alga Nannochloropsis oceanica, while multiple acyl CoA:diacylglycerol (DAG) acyltransferases (NoDGATs) are involved in TAG production, the role of the unique phospholipid:DAG acyltransferase (NoPDAT) remains unknown. Here, we performed a functional complementation assay in TAG-deficient yeast (Saccharomyces cerevisiae) and an in vitro assay to probe the acyltransferase activity of NoPDAT. Subcellular localization, overexpression, and knockdown (KD) experiments were also conducted to elucidate the role of NoPDAT in N. oceanica. NoPDAT, residing at the outermost plastid membrane, does not phylogenetically fall into the clades of algae or plants and uses phosphatidylethanolamine (PE) and phosphatidylglycerol with 16:0, 16:1, and 18:1 at position sn-2 as acyl-donors in vivo. NoPDAT KD, not triggering any compensatory mechanism via DGATs, led to an ∼30% decrease of TAG content, accompanied by a vast accumulation of PEs rich in 16:0, 16:1, and 18:1 fatty acids (referred to as "LU-PE") that was positively associated with CO2 availability. We conclude that the NoPDAT pathway is parallel to and independent of the NoDGAT pathway for oil production. LU-PE can serve as an alternative carbon sink for photosynthetically assimilated carbon in N. oceanica when PDAT-mediated TAG biosynthesis is compromised or under stress in the presence of high CO2 levels.


Asunto(s)
Aciltransferasas , Microalgas , Fosfatidiletanolaminas , Aciltransferasas/genética , Aciltransferasas/metabolismo , Dióxido de Carbono/metabolismo , Secuestro de Carbono/genética , Secuestro de Carbono/fisiología , Diacilglicerol O-Acetiltransferasa/metabolismo , Microalgas/genética , Microalgas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicéridos/genética , Triglicéridos/metabolismo
2.
PLoS One ; 14(7): e0219435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291335

RESUMEN

Carrier proteins are four-helix bundles that covalently hold metabolites and secondary metabolites, such as fatty acids, polyketides and non-ribosomal peptides. These proteins mediate the production of many pharmaceutically important compounds including antibiotics and anticancer agents. Acyl carrier proteins (ACPs) can be found as part of a multi-domain polypeptide (Type I ACPs), or as part of a multiprotein complex (Type II). Here, the main focus is on ACP2 and ACP3, domains from the type I trans-AT polyketide synthase MmpA, which is a core component of the biosynthetic pathway of the antibiotic mupirocin. During molecular dynamics simulations of their apo, holo and acyl forms ACP2 and ACP3 both form a substrate-binding surface-groove. The substrates bound to this surface-groove have polar groups on their acyl chain exposed and forming hydrogen bonds with the solvent. Bulky hydrophobic residues in the GXDS motif common to all ACPs, and similar residues on helix III, appear to prohibit the formation of a deep tunnel in type I ACPs and type II ACPs from polyketide synthases. In contrast, the equivalent positions in ACPs from type II fatty acid synthases, which do form a deep solvent-excluded substrate-binding tunnel, have the small residue alanine. During simulation, ACP3 with mutations I61A L36A W44L forms a deep tunnel that can fully bury a saturated substrate in the core of the ACP, in contrast to the surface groove of the wild type ACP3. Similarly, in the ACP from E. coli fatty acid synthase, a type II ACP, mutations can change ligand binding from being inside a deep tunnel to being in a surface groove, thus demonstrating how changing a few residues can modify the possibilities for ligand binding.


Asunto(s)
Proteína Transportadora de Acilo/química , Complejos Multiproteicos/química , Péptidos/química , Sintasas Poliquetidas/química , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Secuestro de Carbono/genética , Escherichia coli/genética , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Simulación de Dinámica Molecular , Complejos Multiproteicos/genética , Mupirocina/biosíntesis , Mupirocina/metabolismo , Péptidos/genética , Mutación Puntual/genética , Sintasas Poliquetidas/genética , Unión Proteica
3.
J Biotechnol ; 184: 100-2, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24858679

RESUMEN

Deletion of pathways for carbon-storage in the cyanobacterium Synechocystis sp. PCC6803 has been suggested as a strategy to increase the size of the available pyruvate pool for the production of (heterologous) chemical commodities. Here we show that deletion of the pathway for glycogen synthesis leads to a twofold increased lactate production rate, under nitrogen-limited conditions, whereas impairment of polyhydroxybutyrate synthesis does not.


Asunto(s)
Glucógeno/biosíntesis , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Fotosíntesis/genética , Secuestro de Carbono/genética , Glucógeno/genética , Ingeniería Metabólica , Mutación , Nitrógeno/metabolismo , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Synechocystis/metabolismo
4.
Appl Environ Microbiol ; 79(21): 6697-705, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23974145

RESUMEN

Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono/fisiología , Anhidrasas Carbónicas/genética , Escherichia coli/genética , Ingeniería Genética , Neisseria gonorrhoeae/enzimología , Secuencia de Bases , Biocatálisis , Western Blotting , Secuestro de Carbono/genética , Anhidrasas Carbónicas/metabolismo , Fraccionamiento Celular , Cartilla de ADN/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Periplasma/enzimología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
5.
Plant Signal Behav ; 7(4): 461-4, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22499167

RESUMEN

The development of an arbuscular mycorrhizal (AM) symbiosis is a non-synchronous process with typical mycorrhizal root containing different symbiotic stages at one time. Methods providing cell type-specific resolution are therefore required to separate these stages and analyze each particular structure independently from each other. We established an experimental system for analyzing specific proteomic changes in arbuscule-containing cells of Glomus intraradices colonized Medicago truncatula roots. The combination of laser capture microdissection (LCM) and liquid chromatography-tandem mass chromatography (LC-MS/MS) allowed the identification of proteins with specific or increased expression in arbuscule-containing cells. Consistent with previous transcriptome data, the proteome of arbuscule-containing cells showed an increased number of proteins involved in lipid metabolism, most likely related to the synthesis of the periarbuscular membrane. In addition, transcriptome data of non-colonized cells of mycorrhizal roots suggest mobilization of carbon resources and their symplastic transport toward arbuscule-containing cells for the synthesis of periarbuscular membranes. This highlights the periarbuscular membrane as important carbon sink in the mycorrhizal symbiosis.


Asunto(s)
Secuestro de Carbono/genética , Perfilación de la Expresión Génica , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Simbiosis/genética , Transporte Biológico/genética , Metabolismo de los Hidratos de Carbono/genética , Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Captura por Microdisección con Láser , Metabolismo de los Lípidos/genética , Medicago truncatula/citología , Medicago truncatula/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA