Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Peptides ; 78: 24-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851701

RESUMEN

The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained activity under host physiological conditions of NaCl, MgCl2 and pH. However, when exposed to serum, LP5 lost activity. Furthermore, when increasing NaCl concentration and lowering pH, the peptide showed reduces activity. When investigating the tolerance mechanisms of S. aureus toward antimicrobial peptides, we found that LP5 was protease resistant. However, the dltA and vraF genes, involved in reducing the net anionic charge of the bacterial cell envelope and sensing of antimicrobial peptides, respectively, played a role in the tolerance of S. aureus against LP5. In addition, the exposure of S. aureus to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti-virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S. aureus, which is crucial information for designing new peptides for optimizing antimicrobial therapy.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Animales , Antibacterianos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Oxígeno/genética , Ligasas de Carbono-Oxígeno/metabolismo , Pollos , Endopeptidasa K/química , Expresión Génica , Concentración de Iones de Hidrógeno , Cloruro de Magnesio/farmacología , Pruebas de Sensibilidad Microbiana , Estabilidad Proteica , Suero/química , Cloruro de Sodio/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Tripsina/química , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
BMC Pharmacol ; 11: 9, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21878090

RESUMEN

BACKGROUND: Trypanosoma brucei (T. brucei) is an infectious agent for which drug development has been largely neglected. We here use a recently developed computer program called AutoGrow to add interacting molecular fragments to S5, a known inhibitor of the validated T. brucei drug target RNA editing ligase 1, in order to improve its predicted binding affinity. RESULTS: The proposed binding modes of the resulting compounds mimic that of ATP, the native substrate, and provide insights into novel protein-ligand interactions that may be exploited in future drug-discovery projects. CONCLUSIONS: We are hopeful that these new predicted inhibitors will aid medicinal chemists in developing novel therapeutics to fight human African trypanosomiasis.


Asunto(s)
Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Mitocondriales/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Ligasas de Carbono-Oxígeno/química , Ligasas de Carbono-Oxígeno/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Estructura Terciaria de Proteína , Edición de ARN , Programas Informáticos , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
3.
PLoS Negl Trop Dis ; 4(8): e803, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20808768

RESUMEN

BACKGROUND: Neglected tropical diseases, including diseases caused by trypanosomatid parasites such as Trypanosoma brucei, cost tens of millions of disability-adjusted life-years annually. As the current treatments for African trypanosomiasis and other similar infections are limited, new therapeutics are urgently needed. RNA Editing Ligase 1 (REL1), a protein unique to trypanosomes and other kinetoplastids, was identified recently as a potential drug target. METHODOLOGY/PRINCIPAL FINDINGS: Motivated by the urgent need for novel trypanocidal therapeutics, we use an ensemble-based virtual-screening approach to discover new naphthalene-based TbREL1 inhibitors. The predicted binding modes of the active compounds are evaluated within the context of the flexible receptor model and combined with computational fragment mapping to determine the most likely binding mechanisms. Ultimately, four new low-micromolar inhibitors are presented. Three of the four compounds may bind to a newly revealed cleft that represents a putative druggable site not evident in any crystal structure. CONCLUSIONS/SIGNIFICANCE: Pending additional optimization, the compounds presented here may serve as precursors for future novel therapies useful in the fight against several trypanosomatid pathogens, including human African trypanosomiasis, a devastating disease that afflicts the vulnerable patient populations of sub-Saharan Africa.


Asunto(s)
Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Mitocondriales/antagonistas & inhibidores , Naftalenos/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Unión Proteica , Tripanocidas/química
4.
Nucleic Acids Res ; 38(13): e138, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20444864

RESUMEN

RNA editing regulates mitochondrial gene expression in trypanosomatid pathogens by creating functional mRNAs. It is catalyzed by a multi-protein complex (the editosome), and is found to be essential in both insect stage and mammalian blood stream form of Trypanosoma brucei. This particular form of RNA editing is unique to trypanosomatids, and thus provides a suitable drug target in trypanosomatid pathogens. Here, we demonstrate the feasibility of a rapid and sensitive fluorescence-based reporter assay to monitor RNA editing based on ribozyme activity. We could validate our new assay using previously identified inhibitors against the essential RNA editing ligase. The principle advantages of this assay are: (i) the use of non-radioactively labeled materials, (ii) sensitivity afforded by fluorescence instrumentation applicable to high-throughput screening of chemical inhibitors against the essential editosome and (iii) a rapid and convenient 'mix and measure' type of assay in low volume with a high signal to noise ratio. This assay should enhance rapid identification and characterization of the editosome inhibitors primarily based on the overall composition of the editosomes from T. brucei. These inhibitors could also be tested against the editosomes from the closely related pathogens including T. cruzi and Leishmania species.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Edición de ARN , ARN Catalítico/metabolismo , Trypanosoma brucei brucei/genética , Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Fluorescencia , Trypanosoma brucei brucei/enzimología
5.
Bioorg Med Chem Lett ; 19(5): 1376-9, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19196510

RESUMEN

The Van enzymes are ATP-dependant ligases responsible for resistance to vancomycin in Staphylococcus aureus and Enteroccoccus species. The de novo molecular design programme SPROUT was used in conjunction with the X-ray crystal structure of Enterococcus faeciumd-alanyl-d-lactate ligase (VanA) to design new putative inhibitors based on a hydroxyethylamine template. The two best ranked structures were selected and efficient syntheses developed. The inhibitory activities of these molecules were determined on E. faecium VanA, and due to structural similarity and a common reaction mechanism, also on d-Ala-d-Ala ligase (DdlB) from Escherichia coli. The phosphate group attached to the hydroxyl moiety of the hydroxyethylamine isostere within these systems is essential for their inhibitory activity against both VanA and DdlB.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Diseño de Fármacos , Etilaminas/síntesis química , Péptido Sintasas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Oxígeno/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Etilaminas/farmacología , Péptido Sintasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 105(45): 17278-83, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18981420

RESUMEN

Trypanosomatid RNA editing is a unique process and essential for these organisms. It therefore represents a drug target for a group of protozoa that includes the causative agents for African sleeping sickness and other devastating tropical and subtropical diseases. Here, we present drug-like inhibitors of a key enzyme in the editing machinery, RNA-editing ligase 1 (REL1). These inhibitors were identified through a strategy employing molecular dynamics to account for protein flexibility. A virtual screen of the REL1 crystal structure against the National Cancer Institute Diversity Set was performed by using AutoDock4. The top 30 compounds, predicted to interact with REL1's ATP-binding pocket, were further refined by using the relaxed complex scheme (RCS), which redocks the compounds to receptor structures extracted from an explicitly solvated molecular dynamics trajectory. The resulting reordering of the ligands and filtering based on drug-like properties resulted in an initial recommended set of 8 ligands, 2 of which exhibited micromolar activity against REL1. A subsequent hierarchical similarity search with the most active compound over the full National Cancer Institute database and RCS rescoring resulted in an additional set of 6 ligands, 2 of which were confirmed as REL1 inhibitors with IC(50) values of approximately 1 microM. Tests of the 3 most promising compounds against the most closely related bacteriophage T4 RNA ligase 2, as well as against human DNA ligase IIIbeta, indicated a considerable degree of selectivity for RNA ligases. These compounds are promising scaffolds for future drug design and discovery efforts against these important pathogens.


Asunto(s)
Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ligandos , Proteínas Mitocondriales/antagonistas & inhibidores , Edición de ARN/genética , Trypanosoma brucei brucei/metabolismo , Animales , Ligasas de Carbono-Oxígeno/química , Biología Computacional/métodos , ADN Ligasa (ATP) , ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Proteínas Mitocondriales/química , Estructura Molecular , Proteínas de Unión a Poli-ADP-Ribosa , ARN Ligasa (ATP)/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Proteínas de Xenopus
7.
FEMS Microbiol Rev ; 32(2): 386-408, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18266857

RESUMEN

Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.


Asunto(s)
Antibacterianos/farmacología , Evolución Molecular , Bacterias Grampositivas/efectos de los fármacos , Peptidoglicano/biosíntesis , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Ligasas de Carbono-Oxígeno/genética , Ligasas de Carbono-Oxígeno/metabolismo , Farmacorresistencia Bacteriana , Bacterias Grampositivas/metabolismo , Familia de Multigenes/efectos de los fármacos , Mutación , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Especificidad por Sustrato
8.
Biochemistry ; 44(32): 10864-72, 2005 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-16086589

RESUMEN

Enzymes catalyzing two of the late steps of chlorophyll biosynthesis are NADPH:protochlorophyllide oxidoreductase (POR), responsible for the light-dependent reduction of protochlorophyllide to chlorophyllide, and chlorophyll synthase that catalyses the esterification of chlorophyllide to chlorophyll. Inhibitors of these enzymes are of interest as potential herbicides. Both enzymes presumably form a complex, and the question arose whether chlorophyll synthase can react with chlorophyllide while it is still bound to POR. Here, we describe the chemical modification of protochlorophyllides and chlorophyllides with space-filling substituents at rings A, B, and E of the tetrapyrrole macrocycle and the reactivity of the modified substrates. Both enzymes tolerate the large and flexible phenylamino substituent at ring B, indicating that ring B points toward the enzyme surface while the substrate is bound. On the basis of the standard compound zinc protopheophorbide a (100% activity), the 7(1)-phenylamino derivative shows a comparable activity (83%) with POR that is higher than that of the parent formyl derivative zinc protopheophorbide b (58% activity). In contrast, the 3(1)-phenylamino derivative is less active (12%) than the parent formyl compound zinc protopheophorbide d (49% activity), indicating that the binding pocket leaves less space around ring A than around ring B. Almost no space must be left around ring E because substitution of the 13(2)-carboxymethyl ester (100% activity) by the 13(2)-carboxyethyl ester reduces the activity to 0.2%. Chlorophyll synthase leaves somewhat more space around ring E on the A side of the tetrapyrrole in the binding pocket; substitution of the 13(2)-proton (100% activity) by a methoxy group (53% activity) and an ethoxy group (11% activity) is tolerated to a certain extent, while the carbomethoxy group in this position is not accepted. Opening of ring E to a chlorin e6 dimethylester is tolerated (39% activity), while the large benzylamide residue at this site leads to the loss of activity. We conclude that the tetrapyrroles bind to both enzymes in the same direction: rings C, D, and E are oriented to the interior of the binding cleft, and rings A and B are oriented to the surface of the enzyme; this excludes simultaneous binding to both enzymes.


Asunto(s)
Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Clorofila/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Proteínas Bacterianas , Sitios de Unión , Clorofila/biosíntesis , Clorofila/síntesis química , Herbicidas , Relación Estructura-Actividad , Especificidad por Sustrato
9.
FEBS J ; 272(12): 2993-3003, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15955059

RESUMEN

The surface charge as well as the electrochemical properties and ligand binding abilities of the Gram-positive cell wall is controlled by the D-alanylation of the lipoteichoic acid. The incorporation of D-Ala into lipoteichoic acid requires the D-alanine:D-alanyl carrier protein ligase (DltA) and the carrier protein (DltC). We have heterologously expressed, purified, and assayed the substrate selectivity of the recombinant proteins DltA with its substrate DltC. We found that apo-DltC is recognized by both endogenous 4'-phosphopantetheinyl transferases AcpS and Sfp. After the biochemical characterization of DltA and DltC, we designed an inhibitor (D-alanylacyl-sulfamoyl-adenosine), which is able to block the D-Ala adenylation by DltA at a K(i) value of 232 nM vitro. We also performed in vivo studies and determined a significant inhibition of growth for different Bacillus subtilis strains when the inhibitor is used in combination with vancomycin.


Asunto(s)
Adenosina/análogos & derivados , Alanina/análogos & derivados , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Ligasas de Carbono-Oxígeno/metabolismo , Adenosina/farmacología , Alanina/farmacología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Ligasas de Carbono-Oxígeno/antagonistas & inhibidores , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Pared Celular/efectos de los fármacos , Clonación Molecular , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli , Inhibidores de Crecimiento/farmacología , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Transferasas , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA