Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Shokuhin Eiseigaku Zasshi ; 65(3): 61-66, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034137

RESUMEN

Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.


Asunto(s)
Carica , Alimentos Modificados Genéticamente , Plantas Modificadas Genéticamente , Carica/genética , ADN de Plantas/genética , ADN de Plantas/análisis , Análisis de los Alimentos/métodos , Inocuidad de los Alimentos , Japón , Plantas Modificadas Genéticamente/genética , Potyvirus/genética , Potyvirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados
2.
Shokuhin Eiseigaku Zasshi ; 65(3): 67-71, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034138

RESUMEN

In the Japanese official detection method for unauthorized genetically modified (GM) papayas, one of two types of real-time PCR reagents with DNA polymerase (TaqMan Gene Master Mix [TaqMan Gene] or FastGene QPCR Probe Mastermix w/ROX [FastGene]) is primarily used for measurement. In 2022, we conducted a laboratory performance study on the unauthorized GM papaya line PRSV-YK, and the results revealed that high threshold cycle (Cq) values for the PRSV-YK detection test were obtained using TaqMan Gene with the 7500 Fast & 7500 Real-Time PCR System (ABI7500) and QuantStudio 12K Flex (QS12K), indicating the possibility of false negatives. The possibility of similar problems with all unauthorized GM papaya lines detection tests needs to be evaluated. In this study, we performed detection tests on unauthorized GM papaya lines (PRSV-YK, PRSV-SC, and PRSV-HN), the cauliflower mosaic virus 35S promotor (CaM), and a papaya positive control (Chy), and examined how the limits of detection (LOD) for each test are affected by two types of DNA polymerases (TaqMan Gene and FastGene) and three types of real-time PCR instruments (ABI7500, QS12K, and LightCycler 480 Instrument II [LC480]). In the PRSV-YK and PRSV-SC detection tests using ABI7500 and QS12K, measurement with TaqMan Gene showed a higher LOD than FastGene. In this case, an exponential amplification curve was confirmed on the amplification plot; however, the amplification curve did not cross the ΔRn threshold line and the correct Cq value was not obtained with a threshold line=0.2. The other tests (PRSV-HN, CaM, and Chy with ABI7500 and QS12K, and all detection tests with LC480) showed no important differences in the LOD for each test using either DNA polymerase. Therefore, when performing PRSV-YK and PRSV-SC detection tests with the ABI7500 or QS12K, FastGene should be used to avoid false negatives for foods containing GM papaya lines PRSV-YK and PRSV-SC at low mixing levels.


Asunto(s)
Carica , ADN Polimerasa Dirigida por ADN , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Carica/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Plantas Modificadas Genéticamente/genética , Alimentos Modificados Genéticamente , Caulimovirus/genética , Potyvirus/genética , Potyvirus/aislamiento & purificación
3.
Methods Mol Biol ; 2827: 279-290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985277

RESUMEN

This chapter presents an efficient protocol for regenerating Carica papaya plants via somatic embryogenesis from immature zygotic embryos from economically important papaya genotypes. To achieve regenerated plants from somatic embryos, in the present protocol, four induction cycles are required, followed by one multiplication cycle and one regeneration cycle. With this optimized protocol, 80% of somatic embryos can be obtained in only 3.5 months. At this stage, calli containing more than 50% globular structures can be used for transformation (via agrobacterium, biobalistics, or any other transformation method). Once transformed, calli can be transferred to the following steps (multiplication, elongation, maturation, rooting, and ex vitro acclimatization) to regenerate a transformed somatic embryo-derived full plant.


Asunto(s)
Carica , Genotipo , Técnicas de Embriogénesis Somática de Plantas , Carica/genética , Carica/embriología , Técnicas de Embriogénesis Somática de Plantas/métodos , Transformación Genética , Plantas Modificadas Genéticamente/genética , Regeneración/genética , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Talanta ; 277: 126437, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901194

RESUMEN

The Papaya ringspot virus (PRSV)-resistant genetically modified (GM) papaya 'Huanong No.1' has been certified as safe for consumption and widely planted in China for about 18 years. To protect consumers' rights and facilitate government supervision and monitoring, it is necessary to establish a simple, rapid, and specific detection method for 'Huanong No.1'. Herein, we developed a platform based on recombinase polymerase amplification (RPA) coupled with CRISPR-Cas12a for the detection of 'Huanong No.1'. The RPA-CRISPR-Cas12a platform was found to have high specificity, with amplification signals only present in 'Huanong No.1'. Additionally, the platform was highly sensitive, with a limit of detection (LOD) of approximately 20 copies. The detection process was fast and could be completed in less than 1 h. This novel platform enables the rapid on-site visualization detection of 'Huanong No.1', eliminating dependence on laboratory conditions and specialized instruments, and can serve as a technical reference for the rapid detection of other GM plants.


Asunto(s)
Sistemas CRISPR-Cas , Carica , Técnicas de Amplificación de Ácido Nucleico , Plantas Modificadas Genéticamente , Carica/genética , Carica/virología , Sistemas CRISPR-Cas/genética , Plantas Modificadas Genéticamente/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/genética , Potyvirus/aislamiento & purificación , Recombinasas/metabolismo , Límite de Detección , Proteínas Bacterianas , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
5.
Viruses ; 16(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38932116

RESUMEN

Papaya ringspot virus (PRSV) limits papaya production worldwide. Previously, we generated transgenic lines of hybrid Tainung No.2 (TN-2) carrying the coat protein (CP) gene of PRSV with broad resistance to PRSV strains. Unfortunately, all of them were female, unacceptable for growers and consumers in practical applications. With our reported flanking sequences and the newly released papaya genomic information, the CP-transgene insert was identified at a non-coding region in chromosome 3 of the papaya genome, and the flanking sequences were verified and extended. The female transgenic line 16-0-1 was first used for backcrossing with the parental Sunrise cultivar six times and then followed by selfing three times. With multi-level molecular markers developed from the PRSV CP transgene and the genomic flanking sequences, the presence and zygosity of the CP transgene were characterized at the seedling stage. Meanwhile, hermaphrodite genotype was identified by a sex-linked marker. With homozygotic transgene and horticultural properties of Sunrise, a selected hermaphrodite individual was propagated by tissue culture (TC) and used as maternal progenitor to cross with non-transgenic parental cultivar Thailand to generate a new hybrid cultivar TN-2 with a hemizygotic CP-transgene. Three selected hermaphrodite individuals of transgenic TN were micropropagated by TC, and they showed broad-spectrum resistance to different PRSV strains from Taiwan, Hawaii, Thailand, and Mexico under greenhouse conditions. The selected clone TN-2 #1, with excellent horticultural traits, also showed complete resistance to PRSV under field conditions. These selected TC clones of hermaphrodite transgenic TN-2 provide a novel cultivation system in Taiwan and elsewhere.


Asunto(s)
Proteínas de la Cápside , Carica , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Potyvirus , Transgenes , Carica/virología , Carica/genética , Potyvirus/genética , Plantas Modificadas Genéticamente/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Proteínas de la Cápside/genética , Genoma de Planta , Mapeo Cromosómico
6.
Sci Rep ; 14(1): 14830, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937542

RESUMEN

Physical mapping evidences the chromosome organization and structure. Despite the data about plant cytogenomics, physical mapping has been conducted from single-copy and/or low-copy genes for few species. Carica papaya cytogenomics has been accomplished from BAC-FISH and repeatome sequences. We aimed to map the serk 2, svp-like and mdar 4 sequences in C. papaya. The sequences were amplified and the amplicons sequenced, showing similarity in relation to serk 2, svp-like and mdar 4 genes. Carica papaya diploidy was confirmed and the mitotic chromosomes characterized. The chromosome 1 exhibited the secondary constriction pericentromeric to the centromere of the long arm. So, we concluded that it is the sex chromosomes. serk 2 was mapped in the long arm interstitial portion of the sex chromosomes, and the interphase nuclei showed two fluorescence signals. Considering these results and the sequencing data from the C. papaya sex chromosomes, svp-like and mdar 4 genes were mapped in the interstitial region of the sex chromosome long arm. Both sequences showed only one fluorescence signal in the interphase nuclei. The procedure adopted here can be reproduced for other single-copy and/or low-copy genes, allowing the construction of cytogenetic maps. In addition, we revisited the cytogenomics data about C. papaya sex chromosomes, presenting a revised point of view about the structure and evolution to these chromosomes.


Asunto(s)
Carica , Cromosomas de las Plantas , Cromosomas Sexuales , Carica/genética , Cromosomas de las Plantas/genética , Cromosomas Sexuales/genética , Mapeo Físico de Cromosoma , Hibridación Fluorescente in Situ/métodos , Proteínas de Plantas/genética , Mapeo Cromosómico , Genes de Plantas
7.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632280

RESUMEN

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Asunto(s)
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteómica , Procesos de Determinación del Sexo , Flores/genética , Regulación de la Expresión Génica de las Plantas
8.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611765

RESUMEN

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Asunto(s)
Carica , Carica/genética , Antocianinas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Espectrometría de Masas en Tándem , Metaboloma , Verduras
9.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474290

RESUMEN

Commercial papaya varieties grown in Australia vary greatly in taste and aroma. Previous profiling has identified undesirable 'off tastes' in existing varieties, discouraging a portion of the population from consuming papayas. Our focus on enhancing preferred flavours led to an exploration of the genetic mechanisms and biosynthesis pathways that underlie these desired taste profiles. To identify genes associated with consumer-preferred flavours, we conducted whole RNA sequencing and de novo genome assembly on papaya varieties RB1 (known for its sweet flavour and floral aroma) and 1B (less favoured due to its bitter taste and musty aroma) at both ripe and unripe stages. In total, 180,368 transcripts were generated, and 118 transcripts related to flavours were differentially expressed between the two varieties at the ripe stage. Five genes (cpBGH3B, cpPFP, cpSUS, cpGES and cpLIS) were validated through qPCR and significantly differentially expressed. These genes are suggested to play key roles in sucrose metabolism and aromatic compound production pathways, holding promise for future selective breeding strategies. Further exploration will involve assessing their potential across broader germplasm and various growth environments.


Asunto(s)
Carica , Gusto , Carica/genética , Australia , Percepción del Gusto , Aromatizantes
10.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319003

RESUMEN

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Asunto(s)
Ácido Abscísico , Calcio , Carica , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Carica/metabolismo , Carica/genética , Carica/crecimiento & desarrollo , Calcio/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calmodulina/metabolismo , Calmodulina/genética , Reguladores del Crecimiento de las Plantas/metabolismo
11.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417796

RESUMEN

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Asunto(s)
Carica , Glutatión Transferasa , Tiram , Carica/enzimología , Carica/genética , Fungicidas Industriales/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Prep Biochem Biotechnol ; 54(7): 882-895, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38170207

RESUMEN

In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.


Asunto(s)
Carica , Proteínas de Plantas , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Ricinus , Carica/genética , Carica/enzimología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimología , Ricinus/genética , Estrés Fisiológico
13.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139107

RESUMEN

Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.


Asunto(s)
Acuaporinas , Carica , Humanos , Carica/genética , Genoma de Planta , Filogenia , Proteínas de Plantas/metabolismo , Verduras/metabolismo , Acuaporinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
14.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762345

RESUMEN

MIKC-type MADS-box genes, also known as type II genes, play a crucial role in regulating the formation of floral organs and reproductive development in plants. However, the genome-wide identification and characterization of type II genes as well as a transcriptomic survey of their potential roles in Carica papaya remain unresolved. Here, we identified and characterized 24 type II genes in the C. papaya genome, and investigated their evolutional scenario and potential roles with a widespread expression profile. The type II genes were divided into thirteen subclades, and gene loss events likely occurred in papaya, as evidenced by the contracted member size of most subclades. Gene duplication mainly contributed to MIKC-type gene formation in papaya, and the duplicated gene pairs displayed prevalent expression divergence, implying the evolutionary significance of gene duplication in shaping the diversity of type II genes in papaya. A large-scale transcriptome analysis of 152 samples indicated that different subclasses of these genes showed distinct expression patterns in various tissues, biotic stress response, and abiotic stress response, reflecting their divergent functions. The hub-network of male and female flowers and qRT-PCR suggested that TT16-3 and AGL8 participated in male flower development and seed germination. Overall, this study provides valuable insights into the evolution and functions of MIKC-type genes in C. papaya.


Asunto(s)
Carica , Transcriptoma , Carica/genética , Perfilación de la Expresión Génica , Genómica , Flores/genética
15.
Sci Rep ; 13(1): 13431, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596489

RESUMEN

Despite the relevance of the global scenario regarding the papaya (Carica papaya L.) trade, there is still a limited number of papaya cultivars with different fruit patterns. Therefore, it is essential to explore the genetic variability at all levels of the germplasm used in the development of new papaya cultivars to meet its marketing goal. Thus, this study measured and explored the potential of genetic variability based on related to fruit quality traits, of a population of papaya lines in the F5 generation through several statistical analyzes. For this, 97 inbred lines obtained using the Single Seed Descent method, resulting from a cross between the JS-12 and Sekati genotypes, both with Formosa fruit pattern, were evaluated. Results indicated there was genetic variability in the fruit quality. The traits that most contributed to the variability were related to the fruit shape. The diverse population of 97 inbred papaya lines in the F5 generation showed promise for producing commercial-sized fruits in Formosa, Intermediate, and Solo patterns. Additionally, the selection of inbred papaya lines based on fruit shape using morpho-anatomical traits does not compromise physical and chemical parameters related to fruit quality.


Asunto(s)
Carica , Frutas , Frutas/genética , Carica/genética , Semillas , Citoplasma , Verduras , Variación Genética
16.
Plant Sci ; 335: 111814, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562730

RESUMEN

Papaya (Carica papaya L.) is an economically significant plant that produces fruit consumed worldwide due to its organoleptic characteristics. Since their commercial production, papaya fruits have faced several problems, such as pests, which have been partly resolved using transgenic varieties. Nevertheless, a principal challenge in this cultivation is the plant's sex determination. The sex issue in papaya is complex because papaya flowers can bear three sex forms: male, female, and hermaphrodite, which affects their fruit production, shape, and yield. Fruits from hermaphrodite plants are preferred more by consumers than female ones, and male plants rarely produce fruits without commercial value. Chromosomes are responsible for sex determination in papaya, denoted as XY for male, XX for female, and XYh for hermaphrodite. However, genes related to sex have been reported but are not conclusive. Factors such as the environment, hormones, and genetic and epigenetic background can also affect sex expression. Therefore, in this review, we will discuss recent research on the sex of papaya, from reported genes to date, their biology, and sexing approaches using molecular markers and their advantages.


Asunto(s)
Carica , Carica/genética , Verduras
17.
Biol Pharm Bull ; 46(5): 713-717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37121697

RESUMEN

A loop-mediated isothermal amplification (LAMP)-mediated screening detection method for genetically modified (GM) papaya was developed targeting the 35S promoter (P35S) of the cauliflower mosaic virus. LAMP products were detected using a Genie II real-time fluorometer. The limit of detection (LOD) was evaluated and found to be ≤0.05% for papaya seeds. We also designed a primer set for the detection of the papaya endogenous reference sequence, chymopapain, and the species-specificity was confirmed. To improve cost-effectiveness, single-stranded tag hybridization (STH) on a chromatography printed-array strip (C-PAS) system, which is a lateral flow DNA chromatography technology, was applied. LAMP amplification was clearly detected by the system at the LOD level, and a duplex detection of P35S and chymopapain was successfully applied. This simple and quick method for the screening of GM papaya will be useful for the prevention of environmental contamination of unauthorized GM crops.


Asunto(s)
Carica , Quimopapaína , Carica/genética , Plantas Modificadas Genéticamente/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Verduras , Sensibilidad y Especificidad
18.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 614-624, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36847093

RESUMEN

Papaya, which is mainly cultivated in the southeastern region of China, is one of the four famous fruits in Lingnan. It is favored by people because of its edible and medicinal value. Fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase (F2KP) is a unique bifunctional enzyme with a kinase domain and an esterase domain that catalyzes the synthesis and degradation of fructose-2, 6-bisphosphate (Fru-2, 6-P2), an important regulator of glucose metabolism in organisms. In order to study the function of the gene CpF2KP encoding the enzyme in papaya, it is particularly important to obtain the target protein. In this study, the coding sequence (CDS) of CpF2KP, with a full-length of 2 274 bp, was got from the papaya genome. The amplified sequence of full-length CDS was cloned into the vector PGEX-4T-1 which was double digested with EcoR I and BamH I. The amplified sequence was constructed into a prokaryotic expression vector by genetic recombination. After exploring the induction conditions, the results of SDS-PAGE showed that the size of the recombinant GST-CpF2KP protein was about 110 kDa. The optimum IPTG concentration and temperature for CpF2KP induction were 0.5 mmol/L and 28 ℃, respectively. The purified sin[A1] gle target protein was obtained after purifying the induced CpF2KP protein. In addition, the expression level of this gene was detected in different tissues, and showed that the gene was expressed at the highest level in seeds and the lowest in pulp. This study provides an important basis for further revealing the function of CpF2KP protein and studying the involved biological processes of this gene in papaya.


Asunto(s)
Carica , Humanos , Carica/genética , Proteínas Recombinantes , Metabolismo de los Hidratos de Carbono , Clonación Molecular , China
19.
Chinese Journal of Biotechnology ; (12): 614-624, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970395

RESUMEN

Papaya, which is mainly cultivated in the southeastern region of China, is one of the four famous fruits in Lingnan. It is favored by people because of its edible and medicinal value. Fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase (F2KP) is a unique bifunctional enzyme with a kinase domain and an esterase domain that catalyzes the synthesis and degradation of fructose-2, 6-bisphosphate (Fru-2, 6-P2), an important regulator of glucose metabolism in organisms. In order to study the function of the gene CpF2KP encoding the enzyme in papaya, it is particularly important to obtain the target protein. In this study, the coding sequence (CDS) of CpF2KP, with a full-length of 2 274 bp, was got from the papaya genome. The amplified sequence of full-length CDS was cloned into the vector PGEX-4T-1 which was double digested with EcoR I and BamH I. The amplified sequence was constructed into a prokaryotic expression vector by genetic recombination. After exploring the induction conditions, the results of SDS-PAGE showed that the size of the recombinant GST-CpF2KP protein was about 110 kDa. The optimum IPTG concentration and temperature for CpF2KP induction were 0.5 mmol/L and 28 ℃, respectively. The purified sin[A1] gle target protein was obtained after purifying the induced CpF2KP protein. In addition, the expression level of this gene was detected in different tissues, and showed that the gene was expressed at the highest level in seeds and the lowest in pulp. This study provides an important basis for further revealing the function of CpF2KP protein and studying the involved biological processes of this gene in papaya.


Asunto(s)
Humanos , Carica/genética , Proteínas Recombinantes , Metabolismo de los Hidratos de Carbono , Clonación Molecular , China
20.
Front Cell Infect Microbiol ; 12: 958741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159651

RESUMEN

Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.


Asunto(s)
Carica , Haemonchus , Animales , Antiparasitarios/farmacología , Carica/genética , Línea Celular , Ecosistema , Haemonchus/genética , Humanos , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA