Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 400
1.
Genes (Basel) ; 15(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38674414

Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the ß-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease.


Carnitine O-Acetyltransferase , Carnitine , Enoyl-CoA Hydratase , Liver , Animals , Liver/metabolism , Carnitine/metabolism , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Cichlids/genetics , Cichlids/metabolism , Cichlids/growth & development , Dietary Fats/pharmacology , Dietary Fats/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Lipid Metabolism/genetics
2.
Aging Cell ; 22(11): e14000, 2023 11.
Article En | MEDLINE | ID: mdl-37828898

Aging is accompanied by impaired mitochondrial function and accumulation of senescent cells. Mitochondrial dysfunction contributes to senescence by increasing the levels of reactive oxygen species and compromising energy metabolism. Senescent cells secrete a senescence-associated secretory phenotype (SASP) and stimulate chronic low-grade inflammation, ultimately inducing inflammaging. Mitochondrial dysfunction and cellular senescence are two closely related hallmarks of aging; however, the key driver genes that link mitochondrial dysfunction and cellular senescence remain unclear. Here, we aimed to elucidate a novel role of carnitine acetyltransferase (CRAT) in the development of mitochondrial dysfunction and cellular senescence in dermal fibroblasts. Transcriptomic analysis of skin tissues from young and aged participants showed significantly decreased CRAT expression in intrinsically aged skin. CRAT downregulation in human dermal fibroblasts recapitulated mitochondrial changes in senescent cells and induced SASP secretion. Specifically, CRAT knockdown caused mitochondrial dysfunction, as indicated by increased oxidative stress, disruption of mitochondrial morphology, and a metabolic shift from oxidative phosphorylation to glycolysis. Mitochondrial damage induced the release of mitochondrial DNA into the cytosol, which activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and NF-ĸB pathways to induce SASPs. Consistently, fibroblast-specific CRAT-knockout mice showed increased skin aging phenotypes in vivo, including decreased cell proliferation, increased SASP expression, increased inflammation, and decreased collagen density. Our results suggest that CRAT deficiency contributes to aging by mediating mitochondrial dysfunction-induced senescence.


Carnitine O-Acetyltransferase , Cellular Senescence , Animals , Mice , Humans , Aged , Carnitine O-Acetyltransferase/metabolism , Cellular Senescence/physiology , Mitochondria/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Fibroblasts/metabolism
3.
Nat Metab ; 5(8): 1382-1394, 2023 08.
Article En | MEDLINE | ID: mdl-37443356

Chronic inflammation is associated with increased risk and poor prognosis of heart failure; however, the precise mechanism that provokes sustained inflammation in the failing heart remains elusive. Here we report that depletion of carnitine acetyltransferase (CRAT) promotes cholesterol catabolism through bile acid synthesis pathway in cardiomyocytes. Intracellular accumulation of bile acid or intermediate, 7α-hydroxyl-3-oxo-4-cholestenoic acid, induces mitochondrial DNA stress and triggers cGAS-STING-dependent type I interferon responses. Furthermore, type I interferon responses elicited by CRAT deficiency substantially increase AIM2 expression and AIM2-dependent inflammasome activation. Genetic deletion of cardiomyocyte CRAT in mice of both sexes results in myocardial inflammation and dilated cardiomyopathy, which can be reversed by combined depletion of caspase-1, cGAS or AIM2. Collectively, we identify a mechanism by which cardiac energy metabolism, cholesterol homeostasis and cardiomyocyte-intrinsic innate immune responses are interconnected via a CRAT-mediated bile acid synthesis pathway, which contributes to chronic myocardial inflammation and heart failure progression.


Carnitine O-Acetyltransferase , Heart Failure , Animals , Female , Male , Mice , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Cholesterol , Immunity, Innate , Inflammation , Interferon Type I , Nucleotidyltransferases/metabolism
4.
Environ Sci Pollut Res Int ; 30(35): 83356-83375, 2023 Jul.
Article En | MEDLINE | ID: mdl-37340161

Aluminum (Al) is a ubiquitous xenobiotic with known toxicity for both humans and animals. Our study was conducted to investigate the protective role of febuxostat (Feb) against aluminum chloride (AlCl3)-induced hepatorenal injury in rats. Hepatorenal injury was induced by oral administration of AlCl3 (40 mg/kg b.w.), for 2 months. Twenty-four male Sprague-Dawley rats were randomly allocated into four groups (six rats/group). The first group received the vehicle thought the experiment. The second group was considered as a control positive group. The third and fourth groups received oral treatment of Feb (10 mg/kg.b.w.) and (15 mg/kg.b.w.), respectively with AlCl3, concurrently for 2 months. Twenty-four hours, after the last treatment, serum biochemical, molecular, histopathology, and immunohistochemical studies were evaluated. Our findings showed that rats intoxicated with Alcl3 had disturbed biochemical picture. In addition, intoxication with AlCl3 increased oxidative stress and apoptosis, as demonstrated by an increase in malodialdeyde (MDA), carnitine o-acetyltransferase (Crat), and carbonic anhydrase (Car3) with a decrease in glutathione (GSH), MAP kinase-interacting serine/threonine kinase (MNK) and nuclear factor-erythroid 2-related factor 2 (Nrf2) mRNA expression. Furthermore, the levels of tumor necrosis factor-alpha (TNF-α) and the levels of caspase-3 were elevated with sever hepatic and renal pathological changes. Conversely, Feb (15 mg/kg.b.w.) could improve the serum biochemical indices and repressed MDA, Crat, and Car3 levels, whereas it increased GSH, MNK, and Nrf2 levels. Feb inhibited the apoptotic effect of AlCl3 in the liver and kidney by decreasing caspase-3 and TNF-α expression. The protective effect of Feb against AlCl3 toxicity was confirmed by histopathological findings. Moreover, molecular docking studies supported the anti-inflammatory effect of Feb due to its significant binding interactions with cyclooxygenase-1 (COX-1), NF-kappa-B-inducing kinase (NIK), and mitogen-activated protein kinases-p38 (MAPK-p38). The findings suggest that Feb system Feb can avert Alcl3-induced hepatotoxicity and nephrotoxicity by enhancing the antioxidant defense system, and inhibiting the inflammatory cascade and apoptosis.


Febuxostat , NF-E2-Related Factor 2 , Humans , Rats , Male , Animals , Aluminum Chloride/metabolism , Febuxostat/pharmacology , Febuxostat/metabolism , Caspase 3/metabolism , NF-E2-Related Factor 2/metabolism , Carnitine O-Acetyltransferase/metabolism , Carnitine O-Acetyltransferase/pharmacology , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Molecular Docking Simulation , Antioxidants/metabolism , Liver , Oxidative Stress , Aluminum/metabolism , Glutathione/metabolism , Apoptosis
5.
J Biol Chem ; 299(2): 102848, 2023 02.
Article En | MEDLINE | ID: mdl-36587768

In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for ß-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did ß-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.


Acetyl Coenzyme A , Acetylcarnitine , Carnitine Acyltransferases , Carnitine , Acetyl Coenzyme A/metabolism , Acetylcarnitine/pharmacology , Carnitine/metabolism , Carnitine Acyltransferases/metabolism , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Oxidation-Reduction , Humans , Cell Line, Tumor
6.
JCI Insight ; 8(1)2023 01 10.
Article En | MEDLINE | ID: mdl-36413408

BACKGROUNDAt the onset of exercise, the speed at which phosphocreatine (PCr) decreases toward a new steady state (PCr on-kinetics) reflects the readiness to activate mitochondrial ATP synthesis, which is secondary to Acetyl-CoA availability in skeletal muscle. We hypothesized that PCr on-kinetics are slower in metabolically compromised and older individuals and are associated with low carnitine acetyltransferase (CrAT) protein activity and compromised physical function.METHODSWe applied 31P-magnetic resonance spectroscopy (31P-MRS) to assess PCr on-kinetics in 2 cohorts of volunteers. Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min). Cohort 2 included young (20-30 years) and older (65-80 years) individuals with normal physical activity and older, trained individuals. Previous results of CrAT protein activity and acetylcarnitine content in muscle tissue were used to explore the underlying mechanisms of PCr on-kinetics, along with various markers of physical function.RESULTSPCr on-kinetics were significantly slower in metabolically compromised and older individuals (indicating mitochondrial inertia) as compared with young and older trained volunteers, regardless of in vivo skeletal muscle oxidative capacity (P < 0.001). Mitochondrial inertia correlated with reduced CrAT protein activity, low acetylcarnitine content, and functional outcomes (P < 0.001).CONCLUSIONPCr on-kinetics are significantly slower in metabolically compromised and older individuals with normal physical activity compared with young and older trained individuals, regardless of in vivo skeletal muscle oxidative capacity, indicating greater mitochondrial inertia. Thus, PCr on-kinetics are a currently unexplored signature of skeletal muscle mitochondrial metabolism, tightly linked to functional outcomes. Skeletal muscle mitochondrial inertia might emerge as a target of intervention to improve physical function.TRIAL REGISTRATIONNCT01298375 and NCT03666013 (clinicaltrials.gov).FUNDINGRM and MH received an EFSD/Lilly grant from the European Foundation for the Study of Diabetes (EFSD). VS was supported by an ERC starting grant (grant 759161) "MRS in Diabetes."


Carnitine O-Acetyltransferase , Diabetes Mellitus, Type 2 , Humans , Carnitine O-Acetyltransferase/metabolism , Acetylcarnitine/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Phosphocreatine/metabolism
7.
J Invest Dermatol ; 143(2): 305-316.e5, 2023 Feb.
Article En | MEDLINE | ID: mdl-36058299

Circulating tumor cells are the key link between a primary tumor and distant metastases, but once in the bloodstream, loss of adhesion induces cell death. To identify the mechanisms relevant for melanoma circulating tumor cell survival, we performed RNA sequencing and discovered that detached melanoma cells and isolated melanoma circulating tumor cells rewire lipid metabolism by upregulating fatty acid (FA) transport and FA beta-oxidation‒related genes. In patients with melanoma, high expression of FA transporters and FA beta-oxidation enzymes significantly correlates with reduced progression-free and overall survival. Among the highest expressed regulators in melanoma circulating tumor cells were the carnitine transferases carnitine O-octanoyltransferase and carnitine acetyltransferase, which control the shuttle of peroxisome-derived medium-chain FAs toward mitochondria to fuel mitochondrial FA beta-oxidation. Knockdown of carnitine O-octanoyltransferase or carnitine acetyltransferase and short-term treatment with peroxisomal or mitochondrial FA beta-oxidation inhibitors thioridazine or ranolazine suppressed melanoma metastasis in mice. Carnitine O-octanoyltransferase and carnitine acetyltransferase depletion could be rescued by medium-chain FA supplementation, indicating that the peroxisomal supply of FAs is crucial for the survival of nonadherent melanoma cells. Our study identifies targeting the FA-based cross-talk between peroxisomes and mitochondria as a potential therapeutic opportunity to challenge melanoma progression. Moreover, the discovery of the antimetastatic activity of the Food and Drug Administration‒approved drug ranolazine carries translational potential.


Melanoma , Neoplastic Cells, Circulating , Mice , Animals , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Carnitine Acyltransferases/genetics , Carnitine Acyltransferases/metabolism , Ranolazine , Oxidation-Reduction , Fatty Acids/metabolism , Melanoma/drug therapy , Carnitine/metabolism
8.
Food Chem Toxicol ; 169: 113450, 2022 Nov.
Article En | MEDLINE | ID: mdl-36208653

Prostate cancer (PCa) cells exploit cellular metabolic reprogramming as their survival advantage, especially aberrant lipid signaling and metabolism. Although recent studies deemed that PCa tends to rely on lipid fuel in comparison with aerobic glycolysis, the relationship between lipid metabolism and cancer growth remains unknown. We demonstrated that wogonin, a naturally occurring mono-flavonoid, could induce apoptosis of PCa cells in vivo and in vitro. Mechanistically, 100 µM wogonin significantly increased the expression of proteins related to the fatty acid synthesis and accumulation as a result of stimulation of AKT phosphorylation and nuclear accumulation of sterol regulatory element-binding protein 1 (SREBP1). The wogonin-induced up-regulation of fatty acid synthase (FASN) promoted fatty acid synthesis and storage, while increased oxidation in mitochondria driven by carnitine palmitoyl-transferase 1A (CPT1A) resulted in the loss of mitochondrial membrane potential and reactive oxygen species (ROS) accumulation, ultimately inducing apoptosis in DU145 and 22Rv1 cells. In vivo, 100 mg/kg of wogonin (i.v.) significantly repressed tumor growth without any obvious toxicity in the PCa xenograft model. In short, we proved that wogonin regulated the fatty acid metabolism and induced apoptosis by activating the AKT-SREBP1-FASN signaling network in human PCa cells, and it exhibited potent anti-tumor effects both in vivo and vitro. Thus it might be a promising candidate for the development of anti-cancer drugs.


Antineoplastic Agents , Apoptosis , Fatty Acid Synthase, Type I , Fatty Acids , Flavanones , Prostatic Neoplasms , Sterol Regulatory Element Binding Protein 1 , Humans , Male , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/metabolism , Flavanones/pharmacology , Lipid Metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Carnitine O-Acetyltransferase/metabolism
9.
Mol Biotechnol ; 64(12): 1431-1440, 2022 Dec.
Article En | MEDLINE | ID: mdl-35727434

Human Carnitine Acetyl Transferase (hCAT) reversibly catalyzes the transfer of the acetyl-moiety from acetyl-CoA to L-carnitine, modulating the acetyl-CoA/CoA ratio in mitochondria. Derangement of acetyl-CoA/CoA ratio leads to metabolic alterations that could result in the onset or worsening of pathological states. Due to the importance of CAT as a pharmacological target and to the European directive for reducing animal experimentation, we have pointed out a procedure to produce a recombinant, pure, and functional hCAT using the E. coli expression system. The cDNA encoding for the hCAT was cloned into the pH6EX3 vector. This construct was used to transform the E. coli Rosetta strain. The optimal conditions for the overexpression of the fully active hCAT include induction with a low concentration of IPTG (0.01 mM) and a low growth temperature (25 °C). The recombinant protein was purified from bacterial homogenate by affinity chromatography. The pure hCAT is very stable in an aqueous solution, retaining full activity for at least two months if stored at - 20 °C. These results could be helpful for a broad set of functional studies on hCAT, including drug-design applications.


Carnitine O-Acetyltransferase , Escherichia coli , Acetyl Coenzyme A/metabolism , Animals , Carnitine/metabolism , DNA, Complementary , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Isopropyl Thiogalactoside , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Diabetes Metab J ; 45(6): 933-947, 2021 11.
Article En | MEDLINE | ID: mdl-34407600

BACKGROUND: Carnitine orotate complex (Godex) has been shown to decrease glycated hemoglobin levels and improve steatosis in patients with type 2 diabetes mellitus with non-alcoholic fatty liver disease. However, the mechanisms of Godex in glucose metabolism remain unclear. METHODS: Male C57BL/6J mice were divided into four groups: normal-fat diet, high-fat diet, a high-fat diet supplemented with intraperitoneal injection of (500 mg or 2,000 mg/kg/day) Godex for 8 weeks. Computed tomography, indirect calorimetry, and histological analyses including electron microscopy of the liver were performed, and biochemical profiles and oral glucose tolerance test and insulin tolerance test were undertaken. Expressions of genes in the lipid and glucose metabolism, activities of oxidative phosphorylation enzymes, carnitine acetyltransferase, pyruvate dehydrogenase, and acetyl-coenzyme A (CoA)/CoA ratio were evaluated. RESULTS: Godex improved insulin sensitivity and significantly decreased fasting plasma glucose, homeostatic model assessment for insulin resistance, steatosis, and gluconeogenesis, with a marked increase in fatty acid oxidation as well as better use of glucose in high-fat diet-fed mice. It preserved mitochondrial function and ultrastructure, restored oxidative phosphorylation enzyme activities, decreased acetyl-CoA/CoA ratio, and increased carnitine acetyltransferase content and pyruvate dehydrogenase activity. Carnitine acetyltransferase knockdown partially reversed the effects of Godex in liver and in vitro. CONCLUSION: Godex improved insulin resistance and steatosis by regulating carnitine acetyltransferase in liver in high-fat diet-fed mice.


Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Body Weight , Carnitine/pharmacology , Carnitine O-Acetyltransferase , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism
11.
Nutr Res ; 85: 84-98, 2021 01.
Article En | MEDLINE | ID: mdl-33453499

L-carnitine is an indispensable metabolite facilitating the transport of fatty acids into the mitochondrial matrix and has been previously postulated to exert a nutrigenomic effect. However, the underlying molecular mechanisms remain mostly unclear. We hypothesized that L-carnitine interacts with nuclear receptors involved in metabolic regulation, thereby modulating downstream targets of cellular metabolism. Therefore, we investigated the effect of L-carnitine supplementation on protein activity, mRNA expression, and binding affinities of nuclear receptors as well as mRNA expression of downstream targets in skeletal muscle cells, hepatocytes, and differentiated adipocytes. L-carnitine supplementation to hepatocytes increased the protein activity of multiple nuclear receptors (RAR, RXR, VDR, PPAR, HNF4, ER, LXR). Diverging effects on the mRNA expression of PPAR-α, PPAR-δ, PPAR-γ, RAR-ß, LXR-α, and RXR-α were observed in adipocytes, hepatocytes, and skeletal muscle cells. mRNA levels of PPAR-α, a key regulator of lipolysis and ß-oxidation, were significantly upregulated, emphasizing a role of L-carnitine as a promoter of lipid catabolism. L-carnitine administration to hepatocytes modulated the transcription of key nuclear receptor target genes, including ALDH1A1, a promoter of adipogenesis, and OGT, a contributor to insulin resistance. Electrophoretic mobility shift assays proved L-carnitine to increase binding affinities of nuclear receptors to their promoter target sequences, suggesting a molecular mechanism for the observed transcriptional modulation. Overall, these findings indicate that L-carnitine modulates the activity and expression of nuclear receptors, thereby promoting lipolytic gene expression and decreasing transcription of target genes linked to adipogenesis and insulin resistance.


Adipocytes/metabolism , Carnitine/metabolism , Carnitine/pharmacology , Cell Nucleus/metabolism , Hepatocytes/metabolism , Muscle Fibers, Skeletal/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , 3T3-L1 Cells , Animals , Binding Sites , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Cells, Cultured , Culture Media , Humans , Liver X Receptors/genetics , Mice , Nutrigenomics , PPAR alpha/genetics , PPAR alpha/metabolism , Promoter Regions, Genetic , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Signal Transduction , Transcription, Genetic
12.
Aging Cell ; 19(11): e13266, 2020 11.
Article En | MEDLINE | ID: mdl-33105059

Calorie restriction (CR), an age delaying diet, affects fat oxidation through poorly understood mechanisms. We investigated the effect of CR on fat metabolism gene expression and intermediate metabolites of fatty acid oxidation in the liver. We found that CR changed the liver acylcarnitine profile: acetylcarnitine, short-chain acylcarnitines, and long-chain 3-hydroxy-acylcarnitines increased, and several long-chain acylcarnitines decreased. Acetyl-CoA and short-chain acyl-CoAs were also increased in CR. CR did not affect the expression of CPT1 and upregulated the expression of long-chain and very-long-chain Acyl-CoA dehydrogenases (LCAD and VLCAD, respectively). The expression of downstream enzymes such as mitochondrial trifunctional protein and enzymes in medium- and short-chain acyl-CoAs oxidation was not affected in CR. CR shifted the balance of fatty acid oxidation enzymes and fatty acid metabolites in the liver. Acetyl-CoA generated through beta-oxidation can be used for ketogenesis or energy production. In agreement, blood ketone bodies increased under CR in a time of the day-dependent manner. Carnitine acetyltransferase (CrAT) is a bidirectional enzyme that interconverts short-chain acyl-CoAs and their corresponding acylcarnitines. CrAT expression was induced in CR liver supporting the increased acetylcarnitine and short-chain acylcarnitine production. Acetylcarnitine can freely travel between cellular sub-compartments. Supporting this CR increased protein acetylation in the mitochondria, cytoplasm, and nucleus. We hypothesize that changes in acyl-CoA and acylcarnitine levels help to control energy metabolism and contribute to metabolic flexibility under CR.


Acetyl Coenzyme A/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Carnitine O-Acetyltransferase/metabolism , Animals , Humans , Mice
13.
J Mol Graph Model ; 100: 107692, 2020 11.
Article En | MEDLINE | ID: mdl-32759041

Carnitine acetyltransferase (CAT) is an attractive therapeutic target against fibrosis. We have identified few CAT activators through structure-based virtual screening followed by molecular dynamics simulations for assessment of the binding mode. A set of 10,000 drug-like molecules properly filtered from an initial chemical library of 13 M commercially available compounds were docked into the active site. Virtual hits were selected for in vitro experimental testing to validate the computational findings and the stability of the predicted complexes was evaluated by molecular dynamics simulations. Applied protocol led to the identification of three hit compounds showing promising activity, which can serve as potential scaffolds for further structural optimization. This is the first report of successful discovery of CAT activators through the use of structure-based virtual screening.


Carnitine O-Acetyltransferase , Molecular Dynamics Simulation , Molecular Docking Simulation , Protein Binding , Small Molecule Libraries
14.
Circ Res ; 127(8): 1094-1108, 2020 09 25.
Article En | MEDLINE | ID: mdl-32660330

RATIONALE: Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. OBJECTIVE: This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. METHODS AND RESULTS: A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed ≈86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. CONCLUSIONS: The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.


Heart Failure/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Proteome , Acetylation , Animals , Carnitine O-Acetyltransferase/deficiency , Carnitine O-Acetyltransferase/genetics , Disease Models, Animal , Energy Metabolism , Heart Failure/genetics , Heart Failure/physiopathology , Lysine , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress , Protein Processing, Post-Translational , Proteomics , Sirtuin 3/deficiency , Sirtuin 3/genetics
15.
Arch Biochem Biophys ; 691: 108507, 2020 09 30.
Article En | MEDLINE | ID: mdl-32710884

Mammalian carnitine acetyltransferase (CrAT) is a mitochondrial enzyme that catalyzes the reversible transfer of an acetyl group from acetyl-CoA to carnitine. CrAT knockout studies have shown that this enzyme is critical to sustain metabolic flexibility, or the ability to switch between different fuel types, an underlying theme of the metabolic syndrome. These recent physiological findings imply that CrAT dysfunction, or its catalytic impairment, may lead to disease. To gain insight into the CrAT kinetic mechanism, we conducted stopped-flow experiments in various enzyme substrate/product conditions and analyzed full progress curves by global fitting. Simultaneous mixing of both substrates with CrAT produced relatively fast kinetics that follows an ordered bi bi mechanism. A great preference for ordered binding is supported by stopped-flow double mixing experiments such that premixed CrAT with acetyl-CoA or CoA demonstrated a biphasic decrease in initial rate that produces about a 100-fold attenuation in catalysis. Double mixing experiments also revealed that the CrAT initial rate is inhibited by 50% in approximately 8 s by either acetyl-CoA or CoA premixing. Analysis of available CrAT structures support a substrate conformational change between acetyl-CoA/CoA binary versus ternary complexes. Additional viscosity-based kinetic experiments yielded strong evidence that product release is the rate limiting step in the CrAT-catalyzed reaction.


Carnitine O-Acetyltransferase/chemistry , Acetyl Coenzyme A/chemistry , Acetyl Coenzyme A/metabolism , Animals , Carnitine/chemistry , Carnitine/metabolism , Carnitine O-Acetyltransferase/metabolism , Catalysis , Catalytic Domain , Coenzyme A/chemistry , Coenzyme A/metabolism , Columbidae , Crystallography, X-Ray , Kinetics , Mice , Protein Binding
16.
Theranostics ; 10(16): 7070-7082, 2020.
Article En | MEDLINE | ID: mdl-32641979

New insights into tumor-associated metabolic reprogramming have provided novel vulnerabilities that can be targeted for cancer therapy. Here, we propose a mass spectrometry imaging (MSI)-based metabolomic strategy to visualize the spatially resolved reprogramming of carnitine metabolism in heterogeneous breast cancer. Methods: A wide carnitine coverage MSI method was developed to investigate the spatial alternations of carnitines in cancer tissues of xenograft mouse models and human samples. Spatial expression of key metabolic enzymes that are closely associated with the altered carnitines was examined in adjacent cancer tissue sections. Results: A total of 17 carnitines, including L-carnitine, 6 short-chain acylcarnitines, 3 middle-chain acylcarnitines, and 7 long-chain acylcarnitines were imaged. L-carnitine and short-chain acylcarnitines are significantly reprogrammed in breast cancer. A classification model based on the carnitine profiles of 170 cancer samples and 128 normal samples enables an accurate identification of breast cancer. CPT 1A, CPT 2, and CRAT, which are extensively involved in carnitine system-mediated fatty acid ß-oxidation pathway were also found to be abnormally expressed in breast cancer. Remarkably, the expressions of CPT 2 and CRAT were found for the first time to be altered in breast cancer. Conclusion: These data not only expand our understanding of the complex tumor metabolic reprogramming, but also provide the first evidence that carnitine metabolism is reprogrammed at both the metabolite and enzyme levels in breast cancer.


Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Carnitine/metabolism , Metabolomics/methods , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Breast/pathology , Breast/surgery , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carnitine O-Acetyltransferase/analysis , Carnitine O-Acetyltransferase/metabolism , Carnitine O-Palmitoyltransferase/analysis , Carnitine O-Palmitoyltransferase/metabolism , Cell Line, Tumor , Cohort Studies , Female , Humans , Mass Spectrometry/methods , Mastectomy , Mice , Middle Aged , Xenograft Model Antitumor Assays
17.
Mol Metab ; 37: 100993, 2020 07.
Article En | MEDLINE | ID: mdl-32298772

OBJECTIVES: Glucose-stimulated insulin secretion is a critical function in the regulation of glucose homeostasis, and its deregulation is associated with the development of type 2 diabetes. Here, we performed a genetic screen using islets isolated from the BXD panel of advanced recombinant inbred (RI) lines of mice to search for novel regulators of insulin production and secretion. METHODS: Pancreatic islets were isolated from 36 RI BXD lines and insulin secretion was measured following exposure to 2.8 or 16.7 mM glucose with or without exendin-4. Islets from the same RI lines were used for RNA extraction and transcript profiling. Quantitative trait loci (QTL) mapping was performed for each secretion condition and combined with transcriptome data to prioritize candidate regulatory genes within the identified QTL regions. Functional studies were performed by mRNA silencing or overexpression in MIN6B1 cells and by studying mice and islets with beta-cell-specific gene inactivation. RESULTS: Insulin secretion under the 16.7 mM glucose plus exendin-4 condition was mapped significantly to a chromosome 2 QTL. Within this QTL, RNA-Seq data prioritized Crat (carnitine O-acetyl transferase) as a strong candidate regulator of the insulin secretion trait. Silencing Crat expression in MIN6B1 cells reduced insulin content and insulin secretion by ∼30%. Conversely, Crat overexpression enhanced insulin content and secretion by ∼30%. When islets from mice with beta-cell-specific Crat inactivation were exposed to high glucose, they displayed a 30% reduction of insulin content as compared to control islets. We further showed that decreased Crat expression in both MIN6B1 cells and pancreatic islets reduced the oxygen consumption rate in a glucose concentration-dependent manner. CONCLUSIONS: We identified Crat as a regulator of insulin secretion whose action is mediated by an effect on total cellular insulin content; this effect also depends on the genetic background of the RI mouse lines. These data also show that in the presence of the stimulatory conditions used the insulin secretion rate is directly related to the insulin content.


Carnitine O-Acetyltransferase/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Animals , Carnitine O-Acetyltransferase/metabolism , Diabetes Mellitus, Type 2/metabolism , Exenatide/metabolism , Genetic Testing/methods , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred Strains , Quantitative Trait Loci
18.
Hum Mutat ; 41(1): 110-114, 2020 01.
Article En | MEDLINE | ID: mdl-31448845

Leigh syndrome, or subacute necrotizing encephalomyelopathy, is one of the most severe pediatric disorders of the mitochondrial energy metabolism. By performing whole-exome sequencing in a girl affected by Leigh syndrome and her parents, we identified two heterozygous missense variants (p.Tyr110Cys and p.Val569Met) in the carnitine acetyltransferase (CRAT) gene, encoding an enzyme involved in the control of mitochondrial short-chain acyl-CoA concentrations. Biochemical assays revealed carnitine acetyltransferase deficiency in the proband-derived fibroblasts. Functional analyses of recombinant-purified CRAT proteins demonstrated that both missense variants, located in the acyl-group binding site of the enzyme, severely impair its catalytic function toward acetyl-CoA, and the p.Val569Met variant also toward propionyl-CoA and octanoyl-CoA. Although a single recessive variant in CRAT has been recently associated with neurodegeneration with brain iron accumulation (NBIA), this study reports the first kinetic analysis of naturally occurring CRAT variants and demonstrates the genetic basis of carnitine acetyltransferase deficiency in a case of mitochondrial encephalopathy.


Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Leigh Disease/genetics , Leigh Disease/metabolism , Mutation, Missense , Age of Onset , Binding Sites , Carnitine O-Acetyltransferase/chemistry , DNA Mutational Analysis , Enzyme Activation , Humans , Leigh Disease/diagnosis , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship
19.
Cell Metab ; 31(1): 131-147.e11, 2020 01 07.
Article En | MEDLINE | ID: mdl-31813822

This study sought to examine the functional significance of mitochondrial protein acetylation using a double knockout (DKO) mouse model harboring muscle-specific deficits in acetyl-CoA buffering and lysine deacetylation, due to genetic ablation of carnitine acetyltransferase and Sirtuin 3, respectively. DKO mice are highly susceptible to extreme hyperacetylation of the mitochondrial proteome and develop a more severe form of diet-induced insulin resistance than either single KO mouse line. However, the functional phenotype of hyperacetylated DKO mitochondria is largely normal. Of the >120 measures of respiratory function assayed, the most consistently observed traits of a markedly heightened acetyl-lysine landscape are enhanced oxygen flux in the context of fatty acid fuel and elevated rates of electron leak. In sum, the findings challenge the notion that lysine acetylation causes broad-ranging damage to mitochondrial quality and performance and raise the possibility that acetyl-lysine turnover, rather than acetyl-lysine stoichiometry, modulates redox balance and carbon flux.


Carnitine O-Acetyltransferase/genetics , Insulin Resistance/genetics , Lysine/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/metabolism , Oxidative Stress/genetics , Sirtuin 3/genetics , Acetyl Coenzyme A/metabolism , Acetylation , Animals , Carnitine O-Acetyltransferase/metabolism , Creatine Kinase/metabolism , Diet, High-Fat , Energy Metabolism/genetics , Homeostasis , Hydrogen Peroxide/metabolism , Insulin/blood , Lysine/analogs & derivatives , Male , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Knockout , Mitochondria, Muscle/genetics , Mitochondrial Proteins/genetics , Oxidation-Reduction , Proteome/genetics , Proteome/metabolism , Sirtuin 3/metabolism , Thermodynamics
20.
Life Sci Alliance ; 3(1)2020 01.
Article En | MEDLINE | ID: mdl-31874862

Gene knockout is important for understanding gene function and genetic disorders. The CRISPR/Cas9 system has great potential to achieve this purpose. However, we cannot distinguish visually whether a gene is knocked out and in how many cells it is knocked out among a population of cells. Here, we developed a new system that enables the labelling of knockout cells with fluorescent protein through microhomology-mediated end joining-based knock-in. Using a combination with recombinant adeno-associated virus, we delivered our system into the retina, where the expression of Staphylococcus aureus Cas9 was driven by a retina ganglion cell (RGC)-specific promoter, and knocked out carnitine acetyltransferase (CAT). We evaluated RGCs and revealed that CAT is required for RGC survival. Furthermore, we applied our system to Keap1 and confirmed that Keap1 is not expressed in fluorescently labelled cells. Our system provides a promising framework for cell type-specific genome editing and fluorescent labelling of gene knockout based on knock-in.


DNA End-Joining Repair/genetics , Gene Editing/methods , Gene Knock-In Techniques/methods , Gene Knockout Techniques/methods , Green Fluorescent Proteins/genetics , Staining and Labeling/methods , Animals , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Carnitine O-Acetyltransferase/genetics , Cell Line, Tumor , Cell Survival/genetics , Dependovirus/genetics , Genetic Vectors , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Retinal Ganglion Cells/metabolism , Staphylococcus aureus/enzymology , Transfection
...