Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.873
1.
Bone Res ; 12(1): 34, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816384

Degenerated endplate appears with cheese-like morphology and sensory innervation, contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However, the origin and development mechanism of the cheese-like morphology remain unclear. Here in this study, we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change. Transcriptome sequencing of the endplate chondrocytes under abnormal stress revealed that the Hippo signaling was key for this process. Activation of Hippo signaling or knockout of the key gene Yap1 in the cartilage endplate severed the cheese-like morphological change and disc degeneration after lumbar spine instability (LSI) surgery, while blocking the Hippo signaling reversed this process. Meanwhile, transcriptome sequencing data also showed osteoclast differentiation related gene set expression was up regulated in the endplate chondrocytes under abnormal mechanical stress, which was activated after the Hippo signaling. Among the discovered osteoclast differentiation gene set, CCL3 was found to be largely released from the chondrocytes under abnormal stress, which functioned to recruit and promote osteoclasts formation for cartilage endplate remodeling. Over-expression of Yap1 inhibited CCL3 transcription by blocking its promoter, which then reversed the endplate from remodeling to the cheese-like morphology. Finally, LSI-induced cartilage endplate remodeling was successfully rescued by local injection of an AAV5 wrapped Yap1 over-expression plasmid at the site. These findings suggest that the Hippo signaling induced osteoclast gene set activation in the cartilage endplate is a potential new target for the management of instability induced low back pain and lumbar degeneration.


Chemokine CCL3 , Hippo Signaling Pathway , Intervertebral Disc Degeneration , Lumbar Vertebrae , Osteoclasts , Signal Transduction , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Animals , Osteoclasts/metabolism , Osteoclasts/pathology , Lumbar Vertebrae/pathology , Chemokine CCL3/genetics , Chemokine CCL3/metabolism , Mice , Cartilage/pathology , Cartilage/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Joint Instability/pathology , Joint Instability/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , YAP-Signaling Proteins/metabolism , Male , Mice, Inbred C57BL
2.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698311

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


CRISPR-Cas Systems , Gene Editing , Inflammation , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/therapy , CRISPR-Cas Systems/genetics , Inflammation/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology , Cellular Senescence/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
3.
J Nanobiotechnology ; 22(1): 281, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790015

BACKGROUND: Cartilaginous endplate (CEP) degeneration, which is an important contributor to intervertebral disc degeneration (IVDD), is characterized by chondrocyte death. Accumulating evidence has revealed that dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and dysfunction lead to apoptosis during CEP degeneration and IVDD. Exosomes are promising agents for the treatment of many diseases, including osteoporosis, osteosarcoma, osteoarthritis and IVDD. Despite their major success in drug delivery, the full potential of exosomes remains untapped. MATERIALS AND METHODS: In vitro and in vivo models of CEP degeneration were established by using lipopolysaccharide (LPS). We designed genetically engineered exosomes (CAP-Nrf2-Exos) expressing chondrocyte-affinity peptide (CAP) on the surface and carrying the antioxidant transcription factor nuclear factor E2-related factor 2 (Nrf2). The affinity between CAP-Nrf2-Exos and CEP was evaluated by in vitro internalization assays and in vivo imaging assays. qRT‒PCR, Western blotting and immunofluorescence assays were performed to examine the expression level of Nrf2 and the subcellular localization of Nrf2 and Drp1. Mitochondrial function was measured by the JC-1 probe and MitoSOX Red. Mitochondrial morphology was visualized by MitoTracker staining and transmission electron microscopy (TEM). After subendplate injection of the engineered exosomes, the degree of CEP degeneration and IVDD was validated radiologically and histologically. RESULTS: We found that the cargo delivery efficiency of exosomes after cargo packaging was increased by surface modification. CAP-Nrf2-Exos facilitated chondrocyte-targeted delivery of Nrf2 and activated the endogenous antioxidant defence system in CEP cells. The engineered exosomes inhibited Drp1 S616 phosphorylation and mitochondrial translocation, thereby preventing mitochondrial fragmentation and dysfunction. LPS-induced CEP cell apoptosis was alleviated by CAP-Nrf2-Exo treatment. In a rat model of CEP degeneration, the engineered exosomes successfully attenuated CEP degeneration and IVDD and exhibited better repair capacity than natural exosomes. CONCLUSION: Collectively, our findings showed that exosome-mediated chondrocyte-targeted delivery of Nrf2 was an effective strategy for treating CEP degeneration.


Chondrocytes , Exosomes , Intervertebral Disc Degeneration , Mitochondrial Dynamics , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Exosomes/metabolism , Animals , NF-E2-Related Factor 2/metabolism , Chondrocytes/metabolism , Rats , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Male , Mitochondria/metabolism , Dynamins/metabolism , Dynamins/genetics , Cartilage/metabolism , Cartilage/pathology , Drug Delivery Systems/methods , Apoptosis
4.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38664941

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Cell Proliferation , Chondrocytes , Copper , Cytokines , Macrophages , Osteoarthritis , Macrophages/metabolism , Macrophages/drug effects , Osteoarthritis/pathology , Osteoarthritis/metabolism , Animals , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Copper/metabolism , Copper/pharmacology , Cytokines/metabolism , Mice , Cell Proliferation/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage/metabolism , Cartilage/drug effects , Cartilage/pathology , RAW 264.7 Cells , Glass , Tissue Scaffolds
5.
J Cell Physiol ; 239(5): e31224, 2024 May.
Article En | MEDLINE | ID: mdl-38481029

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Apoptosis , Chondrocytes , Glycolysis , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Apoptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/genetics , Cartilage/metabolism , Cartilage/pathology , Cartilage/drug effects , Extracellular Matrix/metabolism , Male , Disease Models, Animal , Methylprednisolone/pharmacology , Glucocorticoids/pharmacology , Mice, Inbred C57BL , Femur Head/pathology , Femur Head/metabolism
6.
Biomaterials ; 308: 122549, 2024 Jul.
Article En | MEDLINE | ID: mdl-38554643

The availability of human cell-based models capturing molecular processes of cartilage degeneration can facilitate development of disease-modifying therapies for osteoarthritis [1], a currently unmet clinical need. Here, by imposing specific inflammatory challenges upon mesenchymal stromal cells at a defined stage of chondrogenesis, we engineered a human organotypic model which recapitulates main OA pathological traits such as chondrocyte hypertrophy, cartilage matrix mineralization, enhanced catabolism and mechanical stiffening. To exemplify the utility of the model, we exposed the engineered OA cartilage organoids to factors known to attenuate pathological features, including IL-1Ra, and carried out mass spectrometry-based proteomics. We identified that IL-1Ra strongly reduced production of the transcription factor CCAAT/enhancer-binding protein beta [2] and demonstrated that inhibition of the C/EBPß-activating kinases could revert the degradative processes. Human OA cartilage organoids thus represent a relevant tool towards the discovery of new molecular drivers of cartilage degeneration and the assessment of therapeutics targeting associated pathways.


Organoids , Osteoarthritis , Tissue Engineering , Humans , Organoids/metabolism , Organoids/pathology , Osteoarthritis/pathology , Osteoarthritis/metabolism , Tissue Engineering/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Chondrogenesis , Chondrocytes/metabolism , Chondrocytes/pathology , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Cartilage/pathology , Cartilage/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Proteomics
7.
Eur J Ophthalmol ; 34(3): NP101-NP104, 2024 May.
Article En | MEDLINE | ID: mdl-38380886

PURPOSE: To report an atypical presentation of an epibulbar simple cartilaginous choristoma with a unique pigmented multicystic component. CASE DESCRIPTION: A 69-year-old African American female presented for evaluation of a right nasal epibulbar lesion that had progressed over the prior year. Slit-lamp evaluation revealed an immobile, mildly pigmented multicystic lesion measuring 6.0 × 4.5 mm that involved the nasal bulbar conjunctiva and the plica semilunaris. The lesion appeared benign, without feeder vessels or features of epithelial dysplasia. Given its recent growth and the patient's cosmetic concerns, the lesion was excised with ocular surface reconstruction. Histopathological evaluation disclosed a well-circumscribed nodule of well-differentiated cartilage in the substantia propria, consistent with a simple cartilaginous choristoma. The overlying conjunctival stroma contained multiple cysts lined by focally pigment epithelium. The patient recovered well from surgery, with satisfactory cosmetic results. CONCLUSIONS: Our case of epibulbar simple cartilaginous choristoma includes a prominent superficial component of pigmented epithelial cysts, which has not been previously reported in the literature. This augments our knowledge on the spectrum of presentations of cartilaginous choristomas and underscores the importance of histopathological evaluation for definitive diagnosis.


Choristoma , Humans , Choristoma/diagnosis , Choristoma/pathology , Choristoma/surgery , Female , Aged , Conjunctival Diseases/diagnosis , Conjunctival Diseases/surgery , Cartilage/pathology , Cysts/diagnosis , Cysts/surgery , Conjunctiva/pathology , Ophthalmologic Surgical Procedures , Pigment Epithelium of Eye/pathology
8.
Eur J Immunol ; 54(4): e2350659, 2024 Apr.
Article En | MEDLINE | ID: mdl-38314895

Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.


Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Mice , Cartilage/pathology , Complement C5/genetics , Immunoglobulin G , Receptors, IgG/genetics
9.
J Orthop Surg Res ; 19(1): 13, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38169408

PURPOSE: This study is aimed to delve into the crucial proteins associated with hormonal osteonecrosis of the femoral head (ONFH) and its intra-articular lesions through data-independent acquisition (DIA) proteomics and bioinformatics analysis. METHODS: We randomly selected samples from eligible ONFH patients and collected samples from the necrotic area of the femoral head and load-bearing cartilage. The control group comprised specimens from the same location in patients with femoral neck fractures. With DIA proteomics, we quantitatively and qualitatively tested both groups and analyzed the differentially expressed proteins (DEPs) between groups. Additionally, we enriched the analysis of DEP functions using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways and verified the key proteins in ONFH through Western blot. RESULTS: Proteomics experiment uncovered 937 common DEPs (422 upregulated and 515 downregulated) between the two groups. These DEPs mainly participate in biological processes such as hidden attributes, catalytic activity, molecular function regulators, and structural molecule activity, and in pathways such as starch and sucrose metabolism, ECM-receptor interaction, PI3K-Akt signaling, complement and coagulation cascades, IL-17 signaling, phagosome, transcriptional misregulation in cancers, and focal adhesion. Through protein-protein interaction network target gene analysis and Western blot validation, we identified C3, MMP9, APOE, MPO, LCN2, ELANE, HPX, LTF, and THBS1 as key proteins in ONFH. CONCLUSIONS: With DIA proteomics and bioinformatics analysis, this study reveals the molecular mechanisms of intra-articular lesions in ONFH. A correlation in the necrotic area and load-bearing cartilage of ONFH at ARCO stages IIIB-IV as well as potential key regulatory proteins was identified. These findings will help more deeply understand the pathogenesis of ONFH and may provide important clues for seeking more effective treatment strategies.


Femur Head Necrosis , Osteonecrosis , Humans , Femur Head Necrosis/metabolism , Femur Head/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Osteonecrosis/genetics , Cartilage/pathology
10.
Am J Sports Med ; 52(1): 140-154, 2024 01.
Article En | MEDLINE | ID: mdl-38164685

BACKGROUND: Intra-articular (IA) platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) injections have shown efficacy and safety in treating osteoarthritis (OA). However, the effectiveness and mechanisms of combined intraosseous (IO) administration of these orthobiologics have yet to be explored. PURPOSE/HYPOTHESIS: The purpose of this study was to evaluate the effect on pain, cartilage, synovium/infrapatellar fat pad (IFP), and subchondral bone in rat knee OA, comparing isolated IA with combined IA and IO (IA+IO) injections of PRP or BMAC. It was hypothesized that combined injections would be superior to sole IA injections. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 48 rats were divided into 6 groups: sham (only joint puncture during OA induction with IA+IO saline injection treatment) and 5 groups with OA induction, control (IA+IO saline injection), PRP (IA PRP+IO saline injection), BMAC IA (IA BMAC+IO saline injection), PRP IA+IO (IA+IO PRP injection), and BMAC IA+IO (IA+IO BMAC injection). OA was induced by IA injection of monosodium iodoacetate (MIA). Rats were administered different orthobiologics according to their grouping 3 weeks after the MIA injection. Pain changes were evaluated using the weightbearing ratio assay at weeks 3, 4, 5, 7, and 9 after OA induction. Rats were euthanized at week 9 for gross, radiological, histological, immunohistochemical, and immunofluorescence assessments of cartilage, synovium, and subchondral bone. RESULTS: Compared with the control group, all orthobiologics injection groups had reduced joint pain. Compared with IA injection, IA+IO injections provided superior pain relief by suppressing calcitonin gene-related peptide and substance P in both the synovium/IFP and subchondral bone. IA+IO injections slowed the progression of subchondral bone lesions by inhibiting CD31hiEmcnhi vessel formation and excessive osteoclast and osteoblast turnover while preserving subchondral bone microarchitecture, slowing cartilage degeneration. However, IA+IO injections did not outperform isolated IA injections in reducing synovitis and synovium/IFP fibrosis. Compared with PRP, BMAC exhibited superior inhibition of pain-related mediators, but no significant differences were observed in synovitis suppression, infrapatellar fat pad fibrosis, and subchondral bone protection. CONCLUSION: IA+IO injections of orthobiologics were more effective in relieving pain, slowing cartilage degeneration, and inhibiting abnormal vascularization and remodeling compared with isolated IA injections. BMAC showed superior pain relief in the synovium/IFP and subchondral bone compared with PRP. Further research is needed to optimize PRP and BMAC components for enhanced efficacy in OA management. CLINICAL RELEVANCE: Our findings contribute to advancing the understanding of pain relief mechanisms and support the endorsement of IO injection of orthobiologics for the treatment of OA and joint pain.


Cartilage Diseases , Cartilage, Articular , Osteoarthritis, Knee , Platelet-Rich Plasma , Synovitis , Rats , Animals , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Iodoacetic Acid , Pain , Cartilage Diseases/pathology , Injections, Intra-Articular , Cartilage/pathology , Arthralgia/drug therapy , Fibrosis , Treatment Outcome , Cartilage, Articular/pathology
11.
Arthritis Res Ther ; 26(1): 23, 2024 01 15.
Article En | MEDLINE | ID: mdl-38225658

BACKGROUND: Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21-/low B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21+ and CD21-/low B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction. METHODS: Seventy-six eRA patients and 28 age- and sex-matched healthy donors were recruited. Multiple clinical parameters were assessed, including disease activity and radiographic joint destruction. B cell subsets were analysed in peripheral blood (PB) and synovial fluid (SF) using flow cytometry. RESULTS: Compared to healthy donors, the eRA patients displayed an elevated frequency of naïve CD21+ B cells in PB. Amongst memory B cells, eRA patients had lower frequencies of the CD21+CD27+ subsets and CD21-/low CD27+IgD+ subset. The only B cell subset found to associate with clinical factors was the CD21-/low double-negative (DN, CD27-IgD-) cell population, linked with the joint space narrowing score, i.e. cartilage destruction. Moreover, in SF from patients with established RA, the CD21-/low DN B cells were expanded and these cells expressed receptor activator of the nuclear factor κB ligand (RANKL). CONCLUSIONS: Cartilage destruction in eRA patients was associated with an expanded proportion of CD21-/low DN B cells in PB. The subset was also expanded in SF from established RA patients and expressed RANKL. Taken together, our results suggest a role for CD21-/low DN in RA pathogenesis.


Arthritis, Rheumatoid , B-Lymphocyte Subsets , Humans , B-Lymphocytes , Arthritis, Rheumatoid/pathology , Synovial Fluid , Autoantibodies , Cartilage/pathology
12.
Osteoarthritis Cartilage ; 32(3): 287-298, 2024 Mar.
Article En | MEDLINE | ID: mdl-38072172

OBJECTIVE: The crosstalk of joint pathology with local lymph nodes in osteoarthritis (OA) is poorly understood. We characterized the change in T cells in lymph nodes following load-induced OA and established the association of the presence and migration of T cells to the onset and progression of OA. METHODS: We used an in vivo model of OA to induce mechanical load-induced joint damage. After cyclic tibial compression of mice, we analyzed lymph nodes for T cells using flow cytometry and joint pathology using histology and microcomputed tomography. The role of T-cell migration and the presence of T-cell type was examined using T-cell receptor (TCR)α-/- mice and an immunomodulatory drug, Sphingosine-1-phosphate (S1P) receptor inhibitor-treated mice, respectively. RESULTS: We demonstrated a significant increase in T-cell populations in local lymph nodes in response to joint injury in 10, 16, and 26-week-old mice, and as a function of load duration, 1, 2, and 6 weeks. T-cell expression of inflammatory cytokine markers increased in the local lymph nodes and was associated with load-induced OA progression in the mouse knee. Joint loading in TCRα-/- mice reduced both cartilage degeneration (Osteoarthritis Research Society International (OARSI) scores: TCRα 0.568, 0.981-0.329 confidence interval (CI); wild type (WT) 1.328, 2.353-0.749 CI) and osteophyte formation. Inhibition of T-cell egress from lymph nodes attenuated load-induced cartilage degradation (OARSI scores: Fingolimod: 0.509, 1.821-0.142 CI; Saline 1.210, 1.932-0.758 CI) and decreased localization of T cells in the synovium. CONCLUSIONS: These results establish the association of lymph node-resident T cells in joint damage and suggest that the S1P receptor modulators and T-cell immunotherapies could be used to treat OA.


Cartilage, Articular , Osteoarthritis , Animals , Mice , X-Ray Microtomography , T-Lymphocytes , Osteoarthritis/metabolism , Cartilage/pathology , Knee Joint/pathology , Disease Models, Animal , Cartilage, Articular/pathology
13.
Hum Gene Ther ; 35(7-8): 256-268, 2024 Apr.
Article En | MEDLINE | ID: mdl-38085235

Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.


Iduronate Sulfatase , Mucopolysaccharidosis II , Animals , Mice , Mucopolysaccharidosis II/genetics , Iduronic Acid/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Tissue Distribution , Iduronate Sulfatase/genetics , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology
14.
Rheumatology (Oxford) ; 63(2): 436-445, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37202358

OBJECTIVES: To describe associations between MRI markers with knee symptoms in young adults. METHODS: Knee symptoms were assessed using the WOMAC scale during the Childhood Determinants of Adult Health Knee Cartilage study (CDAH-knee; 2008-2010) and at the 6- to 9-year follow-up (CDAH-3; 2014-2019). Knee MRI scans obtained at baseline were assessed for morphological markers (cartilage volume, cartilage thickness, subchondral bone area) and structural abnormalities [cartilage defects and bone marrow lesions (BMLs)]. Univariable and multivariable (age, sex, BMI adjusted) zero-inflated Poisson (ZIP) regression models were used for analysis. RESULTS: The participants' mean age in CDAH-knee and CDAH-3 were 34.95 (s.d. 2.72) and 43.27 (s.d. 3.28) years, with 49% and 48% females, respectively. Cross-sectionally, there was a weak but significant negative association between medial femorotibial compartment (MFTC) [ratio of the mean (RoM) 0.99971084 (95% CI 0.9995525, 0.99986921), P < 0.001], lateral femorotibial compartment (LFTC) [RoM 0.99982602 (95% CI 0.99969915, 0.9999529), P = 0.007] and patellar cartilage volume [RoM 0.99981722 (95% CI 0.99965326, 0.9999811), P = 0.029] with knee symptoms. Similarly, there was a negative association between patellar cartilage volume [RoM 0.99975523 (95% CI 0.99961427, 0.99989621), P = 0.014], MFTC cartilage thickness [RoM 0.72090775 (95% CI 0.59481806, 0.87372596), P = 0.001] and knee symptoms assessed after 6-9 years. The total bone area was negatively associated with knee symptoms at baseline [RoM 0.9210485 (95% CI 0.8939677, 0.9489496), P < 0.001] and 6-9 years [RoM 0.9588811 (95% CI 0.9313379, 0.9872388), P = 0.005]. The cartilage defects and BMLs were associated with greater knee symptoms at baseline and 6-9 years. CONCLUSION: BMLs and cartilage defects were positively associated with knee symptoms, whereas cartilage volume and thickness at MFTC and total bone area were weakly and negatively associated with knee symptoms. These results suggest that the quantitative and semiquantitative MRI markers can be explored as a marker of clinical progression of OA in young adults.


Bone Diseases , Cartilage Diseases , Cartilage, Articular , Osteoarthritis, Knee , Female , Humans , Young Adult , Child , Male , Osteoarthritis, Knee/complications , Knee Joint/diagnostic imaging , Knee Joint/pathology , Magnetic Resonance Imaging , Cartilage/pathology , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Bone Diseases/complications , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology
15.
J Orthop Res ; 42(4): 737-744, 2024 Apr.
Article En | MEDLINE | ID: mdl-37971288

Failure of endochondral ossification due to interruption of the vascular supply to the epiphyseal cartilage is a critical step in the development of osteochondritis dissecans (OCD). Herein we describe the vascular architecture of the distal humeral epiphyseal cartilage in pigs and identify characteristic features that have been associated with sites predisposed to OCD development across species. Distal humeral specimens were harvested from pigs (n = 5, ages = 1, 10, 18, 30, and, 42 days old) and imaged at 9.4T magnetic resonance imaging (MRI) using a 3D gradient recalled echo sequence. The MRI data were processed using a quantitative susceptibility mapping (QSM) pipeline to visualize the vascular architecture. Specimens were also evaluated histologically to identify the presence of ischemic epiphyseal cartilage necrosis (osteochondrosis [OC]-latens) and associated failure of endochondral ossification (OC-manifesta). The QSM data enabled visualization of two distinct vascular beds arising from the perichondrium at the lateral and medial aspects of the distal humeral epiphysis. Elongated vessels originating from these beds coursed axially to supply the lateral and medial thirds of epiphyseal cartilage. At 18 days of age and older, a shift from perichondrial to transosseous blood supply was noted axially, which appeared more pronounced on the lateral side. This shift coincided with histologic identification of OC-latens (30- and 42-day-old specimens) and OC-manifesta (18- and 42-day-old specimens) lesions in the corresponding regions. The vascular anatomy and its evolution at the distal humeral epiphysis closely resembles that previously reported at predilection sites of knee OCD, suggesting a shared pathophysiology between the knee and elbow joints.


Osteochondritis Dissecans , Osteochondrosis , Osteonecrosis , Animals , Swine , Osteochondritis Dissecans/diagnostic imaging , Osteochondritis Dissecans/etiology , Growth Plate/pathology , Osteochondrosis/pathology , Cartilage/pathology , Osteonecrosis/pathology
16.
Connect Tissue Res ; 65(1): 26-40, 2024 Jan.
Article En | MEDLINE | ID: mdl-37898909

PURPOSE/AIM: Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS: Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS: Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS: Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.


Cartilage Diseases , Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Mice , Male , Animals , Toll-Like Receptor 4 , Disease Models, Animal , Mice, Inbred C57BL , Osteoarthritis/pathology , Cartilage/pathology , Cartilage Diseases/pathology , Cartilage, Articular/pathology , Osteoarthritis, Knee/pathology
17.
Chem Biol Interact ; 388: 110835, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38122922

Osteoarthritis (OA) is a common joint degenerative disease, and chondrocyte injury is the main pathological and physiological change. Ruscogenin (Rus), a bioactive compound isolated from Radix Ophiopogon japonicus, exhibits various pharmacological effects. The aim of this research was to test the role and mechanism of Rus on OA both in vivo and in vitro. Destabilized medial meniscus (DMM)-induced OA model was established in vivo and IL-1ß-stimulated mouse chondrocytes was used to explore the role of Rus on OA in vitro. In vivo, Rus exhibited protective effects against DMM-induced OA model. Rus could inhibit MMP1 and MMP3 expression in OA mice. In vitro, IL-1ß-induced inflammation and degradation of extracellular matrix were inhibited by Rus, as confirmed by the inhibition of PGE2, NO, MMP1, and MMP3 by Rus. Also, IL-1ß-induced ferroptosis was suppressed by Rus, as confirmed by the inhibition of MDA, iron, and ROS, as well as the upregulation of GSH, GPX4, Ferritin, Nrf2, and SLC7A11 expression induced by Rus. Furthermore, the suppression of Rus on IL-1ß-induced inflammation, MMPs production, and ferroptosis were reversed when Nrf2 was knockdown. In conclusion, Rus attenuated OA progression through inhibiting chondrocyte ferroptosis via Nrf2/SLC7A11/GPX4 signaling pathway.


Ferroptosis , Osteoarthritis , Spirostans , Animals , Mice , Cartilage/drug effects , Cartilage/metabolism , Cartilage/pathology , Chondrocytes/drug effects , Ferroptosis/drug effects , Inflammation/metabolism , Interleukin-1beta/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction
18.
J Ultrasound Med ; 43(3): 587-598, 2024 Mar.
Article En | MEDLINE | ID: mdl-38130062

OBJECTIVES: Cervical chondrocutaneous branchial remnants (CCBRs) and dermal lesions, such as epidermoid cysts or brachial anomalies, including lateral cervical cysts/sinuses or dermal sinuses of anterior chest lesions, are usually located at the lower neck at the anterior or posterior border of the sternocleidomastoid muscle (SCM). We aimed to demonstrate the usefulness of ultrasonography in the differential diagnosis and evaluation of CCBRs. METHODS: We evaluated 22 lesions of 20 pediatric patients, classified into CCBR and dermal lesion groups. We used Fisher's exact test to evaluate differences between these groups in terms of lesion shape (low-echoic mass- or tubular-like), whether the lesion was adjacent to/in contact with the SCM or not, and the presence or absence of a concave SCM caused by the lesion. RESULTS: Of the 22 lesions, 8 were CCBRs, and 14 were dermal lesions. We found a significant difference in the presence/absence of adjacency to or contact with the SCM (presence/absence of adjacency to or contact with the SCM in CCBRs vs that in dermal lesions: 6/2 vs 1/13, P = .002) and presence/absence of lesion-induced concavity of the SCM (presence/absence of lesion-induced concavity of the SCM in CCBRs vs that in dermal lesions: 3/5 vs 0/14, P = .036). The lesion shape (low-echoic mass-like/tubular-like lesions) did not significantly differ between the two study groups (low-echoic mass-like/tubular-like lesions in CCBRs vs that in dermal lesions: 5/3 vs 11/6, P = .624). CONCLUSIONS: CCBRs have a strong association with the SCM. These sonographic findings may be useful in the differential diagnosis of dermal cervical lesions.


Cartilage , Epidermal Cyst , Child , Humans , Pilot Projects , Cartilage/abnormalities , Cartilage/pathology , Branchial Region/abnormalities , Branchial Region/pathology , Neck/pathology
19.
Vet Pathol ; 61(1): 74-87, 2024 01.
Article En | MEDLINE | ID: mdl-37431760

Recently, the central and third tarsal bones of 23 equine fetuses and foals were examined using micro-computed tomography. Radiological changes, including incomplete ossification and focal ossification defects interpreted as osteochondrosis, were detected in 16 of 23 cases. The geometry of the osteochondrosis defects suggested they were the result of vascular failure, but this requires histological confirmation. The study aim was to examine central and third tarsal bones from the 16 cases and to describe the tissues present, cartilage canals, and lesions, including suspected osteochondrosis lesions. Cases included 9 males and 7 females from 0 to 150 days of age, comprising 11 Icelandic horses, 2 standardbred horses, 2 warmblood riding horses, and 1 coldblooded trotting horse. Until 4 days of age, all aspects of the bones were covered by growth cartilage, but from 105 days, the dorsal and plantar aspects were covered by fibrous tissue undergoing intramembranous ossification. Cartilage canal vessels gradually decreased but were present in most cases up to 122 days and were absent in the next available case at 150 days. Radiological osteochondrosis defects were confirmed in histological sections from 3 cases and consisted of necrotic vessels surrounded by ischemic chondronecrosis (articular osteochondrosis) and areas of retained, morphologically viable hypertrophic chondrocytes (physeal osteochondrosis). The central and third tarsal bones formed by both endochondral and intramembranous ossification. The blood supply to the growth cartilage of the central and third tarsal bones regressed between 122 and 150 days of age. Radiological osteochondrosis defects represented vascular failure, with chondrocyte necrosis and retention, or a combination of articular and physeal osteochondrosis.


Horse Diseases , Osteochondrosis , Tarsal Bones , Male , Female , Animals , Horses , X-Ray Microtomography , Osteochondrosis/diagnostic imaging , Osteochondrosis/veterinary , Osteochondrosis/pathology , Cartilage/pathology , Necrosis/veterinary , Tarsal Bones/diagnostic imaging , Tarsal Bones/pathology , Horse Diseases/diagnostic imaging , Horse Diseases/pathology
20.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37958864

Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.


Arthritis, Rheumatoid , Humans , Animals , Arthritis, Rheumatoid/pathology , Bone and Bones/pathology , Inflammation/pathology , Autoantibodies , Cartilage/pathology
...