Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Braz. J. Pharm. Sci. (Online) ; 59: e21025, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439501

RESUMEN

Abstract The present study investigated the effects of valerian methanolic extract and valerenic acid on the expression of LL-37 gene and protein in A549 and MRC5 line cells. After preparing Valerian seeds, sowing them in March 2020, and harvesting the rhizome in October 2020, the extract was prepared from the valerian rhizome by maceration method. Valerian acid content was determined using high performance liquid chromatography (HPLC). Two cell lines (A549 and MRC-5) were used to study the effects of valerian extract, and the MTT test was used to evaluate cell viability. The expression of LL-37 mRNA and protein was assessed by Real-Time PCR and western blot, respectively. In vivo safety assessments and histopathological analysis were also conducted. Data was analyzed by Graphpad Prism 8 software. Valerian methanolic extract and valerenic acid upregulated the LL-37 mRNA and protein expression in both treated cell lines. Valerenic acid showed a greater effect on upregulating LL-37 expression than valerian methanolic extract. A549 cells were more sensitive to valerian methanolic extract compared to MRC5 cells, and its cell viability was reduced. Furthermore, liver and kidney-related safety assessments showed that valerian methanolic extract had no toxic effects. In general, it was concluded that the methanolic extract of valerian as well as the resulting valerenic acid as the most important component of the extract has the ability to upregulate LL-37expression. Therefore, methanolic extract of valerian and valerenic acid can be considered for improving the immune system.


Asunto(s)
Valeriana/efectos adversos , Extractos Vegetales/efectos adversos , Catelicidinas/efectos adversos , Western Blotting/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Péptidos Catiónicos Antimicrobianos/agonistas , Células A549/clasificación , Genes/genética , Hígado/anomalías
2.
Front Immunol ; 10: 857, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068939

RESUMEN

RNA aptamers are synthetic single stranded RNA oligonucleotides that function analogously to antibodies. Recently, they have shown promise for use in treating inflammatory skin disease as, unlike antibody-based biologics, they are able to enter the skin following topical administration. However, it is important to understand the inflammatory milieu into which aptamers are delivered, as numerous immune-modulating mediators will be present at abnormal levels. LL-37 is an important immune-modifying protein upregulated in several inflammatory skin conditions, including psoriasis, rosacea and eczema. This inflammatory antimicrobial peptide is known to complex nucleic acids and induce both inflammatory and interferon responses from keratinocytes. Given the attractive notion of using RNA aptamers in topical medication and the prevalence of LL-37 in these inflammatory skin conditions, we examined the effect of LL-37 on the efficacy and safety of the anti-IL-17A RNA aptamer, Apt 21-2. LL-37 was demonstrated to complex with the RNA aptamer by electrophoretic mobility shift and filter binding assays. In contrast to free Apt 21-2, LL-37-complexed Apt 21-2 was observed to efficiently enter both keratinocytes and fibroblasts by confocal microscopy. Despite internalization of LL-37-complexed aptamers, measurement of inflammatory mediators and interferon stimulated genes showed LL-37-complexed Apt 21-2 remained immunologically inert in keratinocytes, fibroblasts, and peripheral blood mononuclear cells including infiltrating dendritic cells and monocytes. The findings of this study suggest RNA aptamers delivered into an inflammatory milieu rich in LL-37 may become complexed and subsequently internalized by surrounding cells in the skin. Whilst the results of this study indicate delivery of RNA aptamers into tissue rich in LL-37 should not cause an unwarranted inflammatory of interferon response, these results have significant implications for the efficacy of aptamers with regards to extracellular vs. intracellular targets that should be taken into consideration when developing treatment strategies utilizing RNA aptamers in inflamed tissue.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Catelicidinas/farmacología , Inflamación/etiología , Inflamación/metabolismo , Interferones/metabolismo , Péptidos Catiónicos Antimicrobianos , Catelicidinas/administración & dosificación , Catelicidinas/efectos adversos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inflamación/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Unión Proteica , ARN , Piel/inmunología , Piel/metabolismo , Piel/patología
3.
Eur J Pharm Biopharm ; 134: 60-67, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30445164

RESUMEN

In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: (i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, (ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and (iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture. Particle size and size distribution were analyzed using dynamic light scattering (DLS), liquid crystalline structure by small angle x-ray scattering (SAXS) and release of LL-37 by a fluorescamine assay. Proteolytic protection of LL-37 as well as bactericidal effect after enzyme exposure was investigated. The skin irritation potential of cubosomes was examined by an in vitro epidermis model. Finally, the bacterial killing property of the cubosomes was examined by an ex vivo pig skin wound infection model with Staphylococcus aureus. Data showed that a high loading of LL-37 induced formation of vesicles in case of cubosomes prepared by sonication (pre-loading). No release of LL-37 was observed from the cubosomes, indicating strong association of the peptide to the particles. Proteolysis studies showed that LL-37 was fully protected against enzymatic attacks while associated with the cubosomes, also denoting strong association of the peptide to the particles. As a consequence, bactericidal effect after enzyme exposure remained, compared to pure LL-37 which was subjected to proteolysis. No skin irritation potential of the cubosomes was found, thus enabling for topical administration. The ex vivo wound infection model showed that LL-37 in pre-loaded cubosomes killed bacteria most efficient.


Asunto(s)
Antiinfecciosos/administración & dosificación , Catelicidinas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico , Administración Tópica , Animales , Antiinfecciosos/efectos adversos , Antiinfecciosos/farmacocinética , Péptidos Catiónicos Antimicrobianos , Catelicidinas/efectos adversos , Catelicidinas/farmacocinética , Modelos Animales de Enfermedad , Liberación de Fármacos , Epidermis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Etanol/química , Glicéridos/química , Humanos , Cristales Líquidos/química , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Dispersión del Ángulo Pequeño , Pruebas de Irritación de la Piel/métodos , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Porcinos , Resultado del Tratamiento , Infección de Heridas/microbiología , Difracción de Rayos X
4.
Amino Acids ; 46(10): 2333-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24952727

RESUMEN

Infected wounds cause delay in wound closure and impose significantly negative effects on patient care and recovery. Antimicrobial peptides (AMPs) with antimicrobial and wound closure activities, along with little opportunity for the development of resistance, represent one of the promising agents for new therapeutic approaches in the infected wound treatment. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 19-amino-acid designer peptide SHAP1 possessed salt-resistant antimicrobial activities. Here, we analyzed the wound closure activities of SHAP1 both in vitro and in vivo. SHAP1 did not affect the viability of human erythrocytes and keratinocytes up to 200 µM, and was not digested by exposure to proteases in the wound fluid, such as human neutrophil elastase and Staphylococcus aureus V8 proteinase for up to 12 h. SHAP1 elicited stronger wound closure activity than human cathelicidin AMP LL-37 in vitro by inducing HaCaT cell migration, which was shown to progress via transactivation of the epidermal growth factor receptor. In vivo analysis revealed that SHAP1 treatment accelerated closure and healing of full-thickness excisional wounds in mice. Moreover, SHAP1 effectively countered S. aureus infection and enhanced wound healing in S. aureus-infected murine wounds. Overall, these results suggest that SHAP1 might be developed as a novel topical agent for the infected wound treatment.


Asunto(s)
Antiinfecciosos Locales/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Queratinocitos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Animales , Antiinfecciosos Locales/efectos adversos , Antiinfecciosos Locales/farmacología , Péptidos Catiónicos Antimicrobianos/efectos adversos , Péptidos Catiónicos Antimicrobianos/farmacología , Catelicidinas/efectos adversos , Catelicidinas/farmacología , Catelicidinas/uso terapéutico , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Eritrocitos/efectos de los fármacos , Femenino , Hemólisis/efectos de los fármacos , Humanos , Queratinocitos/citología , Ratones Endogámicos BALB C , Estabilidad Proteica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Infección de Heridas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...