Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 747
1.
Sci Rep ; 14(1): 13906, 2024 06 17.
Article En | MEDLINE | ID: mdl-38886545

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Cdc20 Proteins , Core Binding Factor Alpha 2 Subunit , Gene Expression Regulation, Neoplastic , Minichromosome Maintenance Complex Component 2 , Ubiquitination , Humans , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cdc20 Proteins/metabolism , Cdc20 Proteins/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Proliferation/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Disease Progression , Cell Movement/genetics
2.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Article En | MEDLINE | ID: mdl-38806674

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Apoptosis Regulatory Proteins , Apoptosis , Bcl-2-Like Protein 11 , M Phase Cell Cycle Checkpoints , Mad2 Proteins , Proto-Oncogene Proteins c-bcl-2 , Animals , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/genetics , Mice , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Atrophy , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mitosis , BH3 Interacting Domain Death Agonist Protein/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , Cdc20 Proteins/metabolism , Cdc20 Proteins/genetics , Bone Marrow/pathology , Bone Marrow/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Tumor Suppressor Proteins
3.
Cell Rep ; 43(5): 114155, 2024 May 28.
Article En | MEDLINE | ID: mdl-38678563

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.


CDC2 Protein Kinase , Cell Cycle , Protein Phosphatase 2 , Animals , Anaphase-Promoting Complex-Cyclosome/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , CDC2 Protein Kinase/metabolism , Cdc20 Proteins/metabolism , Mitosis , Phosphorylation , Protein Phosphatase 2/metabolism , Sf9 Cells , Xenopus
4.
Genes Genomics ; 46(4): 437-449, 2024 Apr.
Article En | MEDLINE | ID: mdl-38438666

BACKGROUND: Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE: This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS: We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS: CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION: Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.


Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Urinary Bladder Neoplasms/metabolism , Cell Proliferation/genetics , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Computational Biology , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism
5.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38523261

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/metabolism , Mitosis , Spindle Apparatus/metabolism
6.
Biochimie ; 221: 75-80, 2024 Jun.
Article En | MEDLINE | ID: mdl-38307244

Alterations in cell cycle regulation contribute to Zika virus (ZIKV)-associated pathogenesis and may have implications for the development of therapeutic avenues. As a matter of fact, ZIKV alters cell cycle progression at multiple stages, including G1, S, G2, and M phases. During a cell cycle, the progression of mitosis is particularly controlled to avoid any abnormalities in cell division. In this regard, the critical metaphase-anaphase transition is triggered by the activation of anaphase-promoting complex/cyclosome (APC/C) by its E3 ubiquitin ligase subunit Cdc20. Cdc20 recognizes substrates by interacting with a destruction box motif (D-box). Recently, the ZIKV nonstructural protein 5 (NS5), one of the most highly conserved flavivirus proteins, has been shown to localize to the centrosome in each pole and to spindle fibers during mitosis. Inducible expression of NS5 reveals an interaction of this viral factor with centrosomal proteins leading to an increase in the time required to complete mitosis. By analyzing the NS5 sequence, we discovered the presence of a D-box. Taken together, these data support the idea that, in addition to its role in viral replication, NS5 plays a critical role in the control of the cell cycle of infected cells and, more specifically, in the regulation of the mitotic spindle. Here we propose that the NS5 protein may interfere with the metaphase-anaphase progression, and thus cause the observed delay in mitosis via the regulation of APC/C.


Anaphase-Promoting Complex-Cyclosome , Mitosis , Viral Nonstructural Proteins , Zika Virus Infection , Zika Virus , Humans , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Cell Cycle , Centrosome/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Zika Virus/physiology , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus Infection/pathology
7.
Eur J Med Chem ; 268: 116204, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38364716

The involvement of CDC20 in promoting tumor growth in different types of human cancers and it disturbs the process of cell division and impedes tumor proliferation. In this work, a novel of Apcin derivatives targeting CDC20 were designed and synthesized to evaluate for their biological activities. The inhibitory effect on the proliferation of four human tumor cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and A549) was observed. Among them, compound E1 exhibited the strongest inhibitory effect on the proliferation of MDA-MB-231 cells with an IC50 value of 1.43 µM, which was significantly superior to that of Apcin. Further biological studies demonstrated that compound E1 inhibited cancer cell migration and colony formation. Furthermore, compound E1 specifically targeted CDC20 and exhibited a higher binding affinity to CDC20 compared to that of Apcin, thereby inducing cell cycle arrest in the G2/M phase of cancer cells. Moreover, it has been observed that compound E1 induces autophagy in cancer cells. In 4T1 Xenograft Models compound E1 exhibited the potential antitumor activity without obvious toxicity. These findings suggest that E1 could be regarded as a CDC20 inhibitor deserved further investigation.


Antineoplastic Agents , Diamines , Triple Negative Breast Neoplasms , Humans , Cell Proliferation , Triple Negative Breast Neoplasms/pathology , Apoptosis , Carbamates/pharmacology , Cell Line, Tumor , Cell Cycle Proteins , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cdc20 Proteins
8.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38337031

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Cdc20 Proteins , M Phase Cell Cycle Checkpoints , Spindle Apparatus , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/chemistry , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Signal Transduction , Humans
9.
J Cell Sci ; 137(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38206091

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Cell Cycle Proteins , Cyclins , Animals , Cell Cycle , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Mitosis , Cdc20 Proteins/metabolism , Mammals/metabolism
10.
FEBS Open Bio ; 14(3): 444-454, 2024 Mar.
Article En | MEDLINE | ID: mdl-38151757

SETDB2 is a H3K9 histone methyltransferase required for accurate chromosome segregation. Its H3K9 histone methyltransferase activity was reported to be associated with chromosomes during metaphase. Here, we confirm that SETDB2 is required for mitosis and accurate chromosome segregation. However, these functions are independent of its histone methyltransferase activity. Further analysis showed that SETDB2 can interact with BUBR1, and is required for CDC20 binding to BUBR1 and APC/C complex and CYCLIN B1 degradation. The ability of SETDB2 to regulate the binding of CDC20 to BUBR1 or APC/C complex, and stabilization of CYCLIN B1 are also independent of its histone methyltransferase activity. These results suggest that SETDB2 interacts with BUBR1 to promote binding of CDC20 to BUBR1 and APC3, then degrades CYCLIN B1 to ensure accurate chromosome segregation and mitosis, independently of its histone methyltransferase activity.


Chromosome Segregation , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cyclin B1/genetics , Cyclin B1/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Spindle Apparatus/metabolism , Cell Cycle Proteins/genetics
11.
Commun Biol ; 6(1): 1216, 2023 11 29.
Article En | MEDLINE | ID: mdl-38030698

Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively functional non-coding somatic variants that are located within predicted melanoma-specific regulatory regions. We identified hundreds of statistically significant hotspots, including the hotspot containing the TERT promoter variants, and focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in human A375 melanoma cell lines and observed decreased expression of CDC20, changes in migration capabilities, increased growth of xenografts, and an altered transcriptional state previously associated with a more proliferative and less migratory state. Overall, our analysis prioritized several recurrent functional non-coding variants that, through downregulation of CDC20, led to perturbation of key melanoma phenotypes.


Melanoma , Humans , Mutation , Melanoma/genetics , Melanoma/metabolism , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Genome , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism
12.
Medicine (Baltimore) ; 102(36): e35038, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37682144

The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.


Neoplasms , Humans , Neoplasms/drug therapy , Cell Transformation, Neoplastic , Carcinogenesis , Cell Cycle Proteins , Cell Cycle , Tumor Microenvironment , Cdc20 Proteins/genetics
13.
EMBO J ; 42(20): e114288, 2023 10 16.
Article En | MEDLINE | ID: mdl-37728253

Genome haploidization at meiosis depends on two consecutive nuclear divisions, which are controlled by an oscillatory system consisting of Cdk1-cyclin B and the APC/C bound to the Cdc20 activator. How the oscillator generates exactly two divisions has been unclear. We have studied this question in yeast where exit from meiosis involves accumulation of the APC/C activator Ama1 at meiosis II. We show that inactivation of the meiosis I-specific protein Spo13/MEIKIN results in a single-division meiosis due to premature activation of APC/CAma1 . In the wild type, Spo13 bound to the polo-like kinase Cdc5 prevents Ama1 synthesis at meiosis I by stabilizing the translational repressor Rim4. In addition, Cdc5-Spo13 inhibits the activity of Ama1 by converting the B-type cyclin Clb1 from a substrate to an inhibitor of Ama1. Cdc20-dependent degradation of Spo13 at anaphase I unleashes a feedback loop that increases Ama1's synthesis and activity, leading to irreversible exit from meiosis at the second division. Thus, by repressing the exit machinery at meiosis I, Cdc5-Spo13 ensures that cells undergo two divisions to produce haploid gametes.


Saccharomyces cerevisiae Proteins , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Meiosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Anaphase , Saccharomyces cerevisiae/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , RNA-Binding Proteins/metabolism
14.
Biologicals ; 83: 101697, 2023 Aug.
Article En | MEDLINE | ID: mdl-37579524

MDCK is currently the main cell line used for influenza vaccine production in culture. Previous studies have reported that MDCK cells possess tumorigenic ability in nude mice. Although complete cell lysis can be ensured during vaccine production, host cell DNA released after cell lysis may still pose a risk for tumorigenesis. Greater caution is needed in the production of human vaccines; therefore, the use of gene editing to establish cells incapable of forming tumors may significantly improve the safety of influenza vaccines. Knowledge regarding the genes and molecular mechanisms that affect the tumorigenic ability of MDCK cells is crucial; however, our understanding remains superficial. Through monoclonal cell screening, we previously obtained a cell line, CL23, that possesses significantly reduced cell proliferation, migration, and invasion abilities, and tumor-bearing experiments in nude mice showed the absence of tumorigenic cells. With a view to exploring tumorigenesis-related genes in MDCK cells, DIA proteomics was used to compare the differences in protein expression between wild-type (M60) and non-tumorigenic (CL23) cells. Differentially expressed proteins were verified at the mRNA level by RT-qPCR, and a number of genes involved in cell tumorigenesis were preliminarily screened. Immunoblotting further confirmed that related protein expression was significantly reduced in non-tumorigenic cells. Inhibition of CDC20 expression by RNAi significantly reduced the proliferation and migration of MDCK cells and increased the proliferation of the influenza virus; therefore, CDC20 was preliminarily determined to be an effective target gene for the inhibition of cell tumorigenicity. These results contribute to a more comprehensive understanding of the mechanism underlying cell tumorigenesis and provide a basis for the establishment of target gene screening in genetically engineered non-tumorigenic MDCK cell lines.


Influenza Vaccines , Mice , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice, Nude , Cell Line , Carcinogenesis/genetics , Cdc20 Proteins
15.
Apoptosis ; 28(11-12): 1584-1595, 2023 12.
Article En | MEDLINE | ID: mdl-37535214

Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.


Apoptosis , Prostatic Neoplasms , Male , Humans , Apoptosis/genetics , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Cell Proliferation/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism
16.
Curr Biol ; 33(11): R447-R449, 2023 06 05.
Article En | MEDLINE | ID: mdl-37279667

Bub1 and Polo kinases are well-known multitasking regulators of mitosis. New work shows that they team up at kinetochores to determine the mitotic duration of embryonic divisions in nematodes. As is often the case, the key effector is Cdc20 activity.


Cell Cycle , Embryo, Nonmammalian , Protein Serine-Threonine Kinases , Animals , Cdc20 Proteins/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Protein Serine-Threonine Kinases/metabolism , Mitosis , Time Factors , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism
17.
Curr Biol ; 33(11): 2291-2299.e10, 2023 06 05.
Article En | MEDLINE | ID: mdl-37137308

During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.


Caenorhabditis elegans , Kinetochores , Animals , Anaphase-Promoting Complex-Cyclosome/metabolism , Caenorhabditis elegans/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centers for Disease Control and Prevention, U.S. , Kinetochores/metabolism , Mitosis , Spindle Apparatus/metabolism , United States
18.
Nature ; 617(7959): 154-161, 2023 05.
Article En | MEDLINE | ID: mdl-37100900

Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.


Cdc20 Proteins , M Phase Cell Cycle Checkpoints , Protein Biosynthesis , Humans , Cdc20 Proteins/chemistry , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spindle Apparatus/metabolism , Peptide Chain Initiation, Translational
19.
Nat Commun ; 14(1): 1529, 2023 03 18.
Article En | MEDLINE | ID: mdl-36934097

The spindle assembly checkpoint (SAC) safeguards the genome during cell division by generating an effector molecule known as the Mitotic Checkpoint Complex (MCC). The MCC comprises two subcomplexes: BUBR1:BUB3 and CDC20:MAD2, and the formation of CDC20:MAD2 is the rate-limiting step during MCC assembly. Recent studies show that the rate of CDC20:MAD2 formation is significantly accelerated by the cooperative binding of CDC20 to the SAC proteins MAD1 and BUB1. However, the molecular basis for this acceleration is not fully understood. Here, we demonstrate that the structural flexibility of MAD1 at a conserved hinge near the C-terminus is essential for catalytic MCC assembly. This MAD1 hinge enables the MAD1:MAD2 complex to assume a folded conformation in vivo. Importantly, truncating the hinge reduces the rate of MCC assembly in vitro and SAC signaling in vivo. Conversely, mutations that preserve hinge flexibility retain SAC signaling, indicating that the structural flexibility of the hinge, rather than a specific amino acid sequence, is important for SAC signaling. We summarize these observations as the 'knitting model' that explains how the folded conformation of MAD1:MAD2 promotes CDC20:MAD2 assembly.


M Phase Cell Cycle Checkpoints , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Kinetochores/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Spindle Apparatus/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , HeLa Cells
20.
Oncogene ; 42(14): 1088-1100, 2023 03.
Article En | MEDLINE | ID: mdl-36792756

PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.


Glioblastoma , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Glioblastoma/genetics , Histones/genetics , Histones/metabolism , Cell Cycle Proteins/metabolism , Methylation , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism
...