Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009760

RESUMEN

Papers in this issue concern extrasynaptic transmission, namely release of signalling molecules by exocytosis or diffusion from neuronal cell bodies, dendrites, axons and glia. Problems discussed concern the molecules, their secretion and importance for normal function and disease. Molecules secreted extrasynaptically include transmitters, peptides, hormones and nitric oxide. For extrasynaptic secretion, trains of action potentials are required, and the time course of release is slower than at synapses. Questions arise concerning the mechanism of extrasynaptic secretion: how does it differ from the release observed at synaptic terminals and gland cells? What kinds of vesicles take part? Is release accomplished through calcium entry, SNAP and SNARE proteins? A clear difference is in the role of molecules released synaptically and extrasynaptically. After extrasynaptic release, molecules reach distant as well as nearby cells, and thereby produce long-lasting changes over large volumes of brain. Such changes can affect circuits for motor performance and mood states. An example with clinical relevance is dyskinesia of patients treated with l-DOPA for Parkinson's disease. Extrasynaptically released transmitters also evoke responses in glial cells, which in turn release molecules that cause local vasodilatation and enhanced circulation in regions of the brain that are active.


Asunto(s)
Cuerpo Celular/metabolismo , Dendritas/metabolismo , Exocitosis/fisiología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Neuronas/citología
2.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009775

RESUMEN

Serotonin, a modulator of multiple functions in the nervous system, is released predominantly extrasynaptically from neuronal cell bodies, axons and dendrites. This paper describes how serotonin is released from cell bodies of Retzius neurons in the central nervous system (CNS) of the leech, and how it affects neighbouring glia and neurons. The large Retzius neurons contain serotonin packed in electrodense vesicles. Electrical stimulation with 10 impulses at 1 Hz fails to evoke exocytosis from the cell body, but the same number of impulses at 20 Hz promotes exocytosis via a multistep process. Calcium entry into the neuron triggers calcium-induced calcium release, which activates the transport of vesicle clusters to the plasma membrane. Exocytosis occurs there for several minutes. Serotonin that has been released activates autoreceptors that induce an inositol trisphosphate-dependent calcium increase, which produces further exocytosis. This positive feedback loop subsides when the last vesicles in the cluster fuse and calcium returns to basal levels. Serotonin released from the cell body is taken up by glia and released elsewhere in the CNS. Synchronous bursts of neuronal electrical activity appear minutes later and continue for hours. In this way, a brief train of impulses is translated into a long-term modulation in the nervous system.


Asunto(s)
Cuerpo Celular/metabolismo , Sistema Nervioso Central/fisiología , Exocitosis/fisiología , Sanguijuelas/fisiología , Modelos Neurológicos , Neuronas/metabolismo , Serotonina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calcio/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Estimulación Eléctrica , Retroalimentación Fisiológica/fisiología , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA