Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85.734
1.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731434

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
2.
Int J Mol Sci ; 25(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38732173

Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.


Adenocarcinoma of Lung , Cyclin-Dependent Kinase 4 , DEAD-box RNA Helicases , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Animals , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/metabolism , Up-Regulation , Mice , Cell Cycle/genetics , Cell Proliferation , Mice, Nude
3.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Article En | MEDLINE | ID: mdl-38693852

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Apoptosis , Histone Deacetylase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Urinary Bladder Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Drug Synergism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology
4.
J Toxicol Environ Health A ; 87(14): 579-591, 2024 Jul 17.
Article En | MEDLINE | ID: mdl-38708983

Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.


Cell Cycle , Germination , Lactuca , Plant Extracts , Tropaeolum , Plant Extracts/pharmacology , Plant Extracts/toxicity , Lactuca/drug effects , Lactuca/growth & development , Cell Cycle/drug effects , Germination/drug effects , Tropaeolum/chemistry , Plant Leaves/chemistry , Flowers/chemistry , Seeds/chemistry
5.
Sci Rep ; 14(1): 10616, 2024 05 09.
Article En | MEDLINE | ID: mdl-38720012

Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.


Apoptosis , Autophagy , Cell Proliferation , Energy Metabolism , Mouth Neoplasms , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Autophagy/drug effects , Inonotus/chemistry , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Glycolysis/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Agaricales/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Cell Cycle/drug effects
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731850

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Cell Cycle , Podophyllotoxin , Proteomics , Humans , Podophyllotoxin/pharmacology , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/chemistry , Proteomics/methods , Cell Cycle/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Etoposide/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HT29 Cells , Cell Proliferation/drug effects , Cell Survival/drug effects
7.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710891

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Apoptosis , Cell Proliferation , Nanoparticles , Neoplastic Stem Cells , Proto-Oncogene Proteins c-myc , Humans , Apoptosis/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Proliferation/drug effects , Nanoparticles/chemistry , Cell Line, Tumor , Nanocomposites/chemistry , Polyelectrolytes/chemistry , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/chemistry , Cell Survival/drug effects , Silicon Dioxide/chemistry , Polyamines/chemistry , Polyamines/pharmacology , Cell Cycle/drug effects
8.
Science ; 384(6695): 512-513, 2024 May 03.
Article En | MEDLINE | ID: mdl-38696587

Mitogenic signaling acts beyond S-phase entry to prevent whole-genome duplications.


Cell Cycle , Animals , Humans , Signal Transduction , Gene Duplication , S Phase
9.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692577

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Apoptosis , Cell Survival , Receptors, CXCR4 , Mice , Cell Survival/drug effects , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Apoptosis/drug effects , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , RAW 264.7 Cells , Cell Line, Tumor , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Models, Biological , Cell Cycle/drug effects , Chemokine CXCL12/metabolism
10.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38696353

BACKGROUND: Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS: We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS: Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS: The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.


ATP Binding Cassette Transporter, Subfamily B , Carcinoma, Hepatocellular , Doxorubicin , Drug Resistance, Neoplasm , Liver Neoplasms , Organoids , Doxorubicin/pharmacology , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Organoids/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chemoembolization, Therapeutic , Cell Cycle/drug effects
11.
Sci Rep ; 14(1): 11468, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769339

Diffusing alpha-emitters radiation therapy (Alpha-DaRT) is a unique method, in which interstitial sources carrying 224Ra release a chain of short-lived daughter atoms from their surface. Although DNA damage response (DDR) is crucial to inducing cell death after irradiation, how the DDR occurs during Alpha-DaRT treatment has not yet been explored. In this study, we temporo-spatially characterized DDR such as kinetics of DNA double-strand breaks (DSBs) and cell cycle, in two-dimensional (2D) culture conditions qualitatively mimicking Alpha-DaRT treatments, by employing HeLa cells expressing the Fucci cell cycle-visualizing system. The distribution of the alpha-particle pits detected by a plastic nuclear track detector, CR-39, strongly correlated with γH2AX staining, a marker of DSBs, around the 224Ra source, but the area of G2 arrested cells was more widely spread 24 h from the start of the exposure. Thereafter, close time-lapse observation revealed varying cell cycle kinetics, depending on the distance from the source. A medium containing daughter nuclides prepared from 224Ra sources allowed us to estimate the radiation dose after 24 h of exposure, and determine surviving fractions. The present experimental model revealed for the first time temporo-spatial information of DDR occurring around the source in its early stages.


Alpha Particles , DNA Breaks, Double-Stranded , Humans , HeLa Cells , DNA Breaks, Double-Stranded/radiation effects , DNA Damage/radiation effects , Cell Cycle/radiation effects , Histones/metabolism , Cell Culture Techniques/methods
12.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747706

Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.


Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cell Cycle , Liver Regeneration/genetics , Gene Expression Regulation
13.
J Biomed Sci ; 31(1): 52, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745221

Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.


RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Genome, Human , Cell Cycle , Genomic Instability
14.
Toxicol Ind Health ; 40(7): 387-397, 2024 Jul.
Article En | MEDLINE | ID: mdl-38729922

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant and has been detected in various environmental matrices including indoor dust. Inhalation of indoor dust is one of the most important pathways for human exposure to TDCIPP. However, its adverse effects on human lung cells and potential impacts on respiratory toxicity are largely unknown. In the current study, human non-small cell carcinoma (A549) cells were selected as a cell model, and the effects of TDCIPP on cell viability, cell cycle, cell apoptosis, and underlying molecular mechanisms were investigated. Our data indicated a concentration-dependent decrease in the cell viability of A549 cells after exposure to TDCIPP for 48 h, with half lethal concentration (LC50) being 82.6 µM. In addition, TDCIPP caused cell cycle arrest mainly in the G0/G1 phase by down-regulating the mRNA expression of cyclin D1, CDK4, and CDK6, while up-regulating the mRNA expression of p21 and p27. In addition, cell apoptosis was induced via altering the expression levels of Bcl-2, BAX, and BAK. Our study implies that TDCIPP may pose potential health risks to the human respiratory system and its toxicity should not be neglected.


Apoptosis , Cell Survival , Flame Retardants , Organophosphorus Compounds , Humans , A549 Cells , Apoptosis/drug effects , Flame Retardants/toxicity , Cell Survival/drug effects , Organophosphorus Compounds/toxicity , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects
15.
Biol Res ; 57(1): 30, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760850

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Cell Cycle , Glioma , Glutarates , Isocitrate Dehydrogenase , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Cell Line, Tumor , Cell Cycle/genetics , Glutarates/metabolism , Mutation , Apoptosis/genetics , Cell Proliferation/genetics , Animals , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Mice, Nude
16.
J Endocrinol ; 262(1)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38692289

CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.


3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Cycle , Hyaluronan Receptors , PPAR gamma , Adipogenesis/genetics , Adipogenesis/physiology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Cell Cycle/genetics , Cell Cycle/physiology , Humans , Adipocytes/metabolism , Gene Deletion , Cell Differentiation/genetics , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction/physiology
17.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727840

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Antifungal Agents , Biofilms , Candida albicans , Cell Membrane , Isothiocyanates , Oxidative Stress , Reactive Oxygen Species , Candida albicans/drug effects , Candida albicans/physiology , Biofilms/drug effects , Antifungal Agents/pharmacology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Cell Cycle/drug effects , Hyphae/drug effects , Hyphae/growth & development , Ergosterol/metabolism
18.
Methods Cell Biol ; 186: 271-309, 2024.
Article En | MEDLINE | ID: mdl-38705604

This chapter was originally written in 2011. The idea was to give some history of cell cycle analysis before and after flow cytometry became widely accessible; provide references to educational material for single parameter DNA content analysis, introduce and discuss multiparameter cell cycle analysis in a methodological style, and in a casual style, discuss aspects of the work over the last 40years that we have given thought, performing some experiments, but didn't publish. It feels like there is a linear progression that moves from counting cells for growth curves, to counting labeled mitotic cells by autoradiography, to DNA content analysis, to cell cycle states defined by immunofluorescence plus DNA content analysis, to extraction of cell cycle expression profiles, and finally to probability state modeling, which should be the "right" way to analyze cytometric cell cycle data. This is the sense of this chapter. In 2023, we have updated it, but the exciting, expansive aspects brought about by spectral and mass cytometry are still young and developing, and thus have not been vetted, reviewed, and presented in mature form.


Cell Cycle , Flow Cytometry , Humans , Flow Cytometry/methods , Animals , DNA
19.
Methods Cell Biol ; 187: 73-97, 2024.
Article En | MEDLINE | ID: mdl-38705631

Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.


Cell Cycle , Humans , Animals , Microscopy, Electron/methods
20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732090

Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.


Muscle Development , Animals , Muscle Development/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Gene Expression Regulation, Developmental , Fish Proteins/genetics , Fish Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cell Cycle/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
...