Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.513
1.
J Immunol ; 208(4): 870-880, 2022 02 15.
Article En | MEDLINE | ID: mdl-35046107

Ribosomal proteins are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein. However, in this study, we show that Rpl22-like1 (Rpl22l1) regulates hematopoiesis without affecting ribosome biogenesis or bulk protein synthesis. Conditional loss of murine Rpl22l1 using stage or lineage-restricted Cre drivers impairs development of several hematopoietic lineages. Specifically, Tie2-Cre-mediated ablation of Rpl22l1 in hemogenic endothelium impairs the emergence of embryonic hematopoietic stem cells. Ablation of Rpl22l1 in late fetal liver progenitors impairs the development of B lineage progenitors at the pre-B stage and development of T cells at the CD44-CD25+ double-negative stage. In vivo labeling with O-propargyl-puromycin revealed that protein synthesis at the stages of arrest was not altered, indicating that the ribosome biogenesis and function were not generally compromised. The developmental arrest was associated with p53 activation, suggesting that the arrest may be p53-dependent. Indeed, development of both B and T lymphocytes was rescued by p53 deficiency. p53 induction was not accompanied by DNA damage as indicated by phospho-γH2AX induction or endoplasmic reticulum stress, as measured by phosphorylation of EIF2α, thereby excluding the known likely p53 inducers as causal. Finally, the developmental arrest of T cells was not rescued by elimination of the Rpl22l1 paralog, Rpl22, as we had previously found for the emergence of hematopoietic stem cells. This indicates that Rpl22 and Rpl22l1 play distinct and essential roles in supporting B and T cell development.


Cell Differentiation/genetics , Lymphopoiesis/genetics , Protein Biosynthesis , Ribosomal Proteins/deficiency , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Lineage/genetics , Cell Lineage/immunology , Cell Plasticity/genetics , Cell Plasticity/immunology , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Immunophenotyping , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Mice, Knockout , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
Development ; 149(8)2022 04 15.
Article En | MEDLINE | ID: mdl-35072209

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Hematopoietic Stem Cells/immunology , Lymphopoiesis/genetics , Receptors, Interleukin-7/genetics , fms-Like Tyrosine Kinase 3/genetics , Adaptive Immunity/genetics , Animals , B-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Regulation, Developmental/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphopoiesis/immunology , Mice , Organ Specificity/genetics , T-Lymphocytes, Regulatory/immunology
3.
Eur J Immunol ; 52(2): 204-221, 2022 02.
Article En | MEDLINE | ID: mdl-34708880

Multiple embryonic precursors give rise to leukocytes in adults while the lineage-based functional impacts are underappreciated. Mesodermal precursors expressing PDGFRα appear transiently during E7.5-8.5 descend to a subset of Lin- Sca1+ Kit+ hematopoietic progenitors found in adult BM. By analyzing a PDGFRα-lineage tracing mouse line, we here report that PDGFRα-lineage BM F4/80+ SSClo monocytes/macrophages are solely Ly6C+ LFA-1hi Mac-1hi monocytes enriched on the abluminal sinusoidal endothelium while Ly6C- LFA-1lo Mac-1lo macrophages are mostly from non-PDGFRα-lineage in vivo. Monocytes with stronger integrin profiles outcompete macrophages for adhesion on an endothelial monolayer or surfaces coated with ICAM-1-Fc or VCAM-1-Fc. Egress of PDGFRα-lineage-rich monocytes and subsequent differentiation to peripheral macrophages spatially segregates them from non-PDGFRα-lineage BM-resident macrophages and allows functional specialization since macrophages derived from these egressing monocytes differ in morphology, phenotype, and functionality from BM-resident macrophages in culture. Extravasation preference for blood PDGFRα-lineage monocytes varies by tissues and governs the local lineage composition of macrophages. More PDGFRα-lineage classical monocytes infiltrated into skin and colon but not into peritoneum. Accordingly, transcriptomic analytics indicated augmented inflammatory cascades in dermatitis skin of BM-chimeric mice harbouring only PDGFRα-lineage leukocytes. Thus, the PDGFRα-lineage origin biasedly generates monocytes predestined for BM exit to support peripheral immunity following extravasation and macrophage differentiation.


Cell Lineage/immunology , Cell Movement/immunology , Endothelium, Vascular/immunology , Macrophages/immunology , Monocytes/immunology , Receptor, Platelet-Derived Growth Factor alpha/immunology , Animals , Cell Lineage/genetics , Cell Movement/genetics , Mice , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor alpha/genetics
4.
Cells ; 10(12)2021 12 07.
Article En | MEDLINE | ID: mdl-34943952

We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.


CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Celiac Disease/therapy , Immune Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/immunology , Antigens/pharmacology , Antigens, Viral/immunology , Antigens, Viral/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Celiac Disease/genetics , Celiac Disease/immunology , Cell Lineage/drug effects , Cell Lineage/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/pharmacology , Glycoproteins/immunology , Glycoproteins/pharmacology , Humans , Immune Tolerance/drug effects , Mice , Mice, Transgenic , Nanoparticles/chemistry , Ovalbumin/immunology , Ovalbumin/pharmacology , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Peptides/immunology , Peptides/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , T-Lymphocytes, Regulatory/drug effects , Viral Proteins/immunology , Viral Proteins/pharmacology
5.
Front Immunol ; 12: 767267, 2021.
Article En | MEDLINE | ID: mdl-34737755

Aging is associated with significant changes in hematopoiesis that include a shift from lymphopoiesis to myelopoiesis and an expansion of phenotypic hematopoietic stem cells (HSCs) with impaired self-renewal capacity and myeloid-skewed lineage differentiation. Signals from commensal flora support basal myelopoiesis in young mice; however, their contribution to hematopoietic aging is largely unknown. Here, we characterize hematopoiesis in young and middle-aged mice housed under specific pathogen free (SPF) and germ-free (GF) conditions. The marked shift from lymphopoiesis to myelopoiesis that develops during aging of SPF mice is mostly abrogated in GF mice. Compared with aged SPF mice, there is a marked expansion of B lymphopoiesis in aged GF mice, which is evident at the earliest stages of B cell development. The expansion of phenotypic and functional HSCs that occurs with aging is similar in SPF and GF mice. However, HSCs from young GF mice have increased lymphoid lineage output, and the aging-associated expansion of myeloid-biased HSCs is significantly attenuated in GF mice. Consistent with these data, RNA expression profiling of phenotypic HSCs from aged GF mice show enrichment for non-myeloid biased HSCs. Surprisingly, the RNA expression profiling data also suggest that inflammatory signaling is increased in aged GF HSCs compared with aged SPF HSCs. Collectively, these data suggest that microbiota-related signals suppress B lymphopoiesis at multiple stages of development and contribute to the expansion of myeloid-biased HSCs that occurs with aging.


Aging/immunology , B-Lymphocytes/immunology , Lymphopoiesis/immunology , Microbiota/immunology , Signal Transduction/immunology , Age Factors , Aging/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Profiling/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Lymphopoiesis/genetics , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
6.
Biochem Soc Trans ; 49(5): 1985-1995, 2021 11 01.
Article En | MEDLINE | ID: mdl-34515758

The γδ T cell immune cell lineage has remained relatively enigmatic and under-characterised since their identification. Conversely, the insights we have, highlight their central importance in diverse immunological roles and homeostasis. Thus, γδ T cells are considered as potentially a new translational tool in the design of new therapeutics for cancer and infectious disease. Here we review our current understanding of γδ T cell biology viewed through a structural lens centred on the how the γδ T cell receptor mediates ligand recognition. We discuss the limited knowledge of antigens, the structural basis of such reactivities and discuss the emerging trends of γδ T cell reactivity and implications for γδ T cell biology.


Immunity, Cellular , Intraepithelial Lymphocytes/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Animals , Antigens/immunology , Cell Lineage/immunology , Communicable Diseases/immunology , Homeostasis/immunology , Humans , Ligands , Neoplasms/immunology
7.
Immunity ; 54(10): 2209-2217.e6, 2021 10 12.
Article En | MEDLINE | ID: mdl-34551314

CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.


CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Lineage/immunology , Gene Editing/methods , Integrases/genetics , Alleles , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line , Mice
8.
Nat Commun ; 12(1): 5446, 2021 09 14.
Article En | MEDLINE | ID: mdl-34521844

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Cell Cycle/genetics , Cell Lineage/genetics , Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , Animals , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Cycle/drug effects , Cell Cycle/immunology , Cell Differentiation , Cell Lineage/drug effects , Cell Lineage/immunology , Epigenesis, Genetic/immunology , Interleukin-12/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
9.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article En | MEDLINE | ID: mdl-34575971

BACKGROUND: The tumor immune microenvironment exerts a pivotal influence in tumor initiation and progression. The aim of this study was to analyze the immune context of sporadic and familial adenomatous polyposis (FAP) lesions along the colorectal adenoma-carcinoma sequence (ACS). METHODS: We analyzed immune cell counts (CD3+, CD4+, CD8+, Foxp3+, and CD57+), tumor mutation burden (TMB), MHC-I expression and PD-L1 expression of 59 FAP and 74 sporadic colorectal lesions, encompassing adenomas with low-grade dysplasia (LGD) (30 FAP; 30 sporadic), adenomas with high-grade dysplasia (22 FAP; 30 sporadic), and invasive adenocarcinomas (7 FAP; 14 sporadic). RESULTS: The sporadic colorectal ACS was characterized by (1) a stepwise decrease in immune cell counts, (2) an increase in TMB and MHC-I expression, and (3) a lower PD-L1 expression. In FAP lesions, we observed the same patterns, except for an increase in TMB along the ACS. FAP LGD lesions harbored lower Foxp3+ T cell counts than sporadic LGD lesions. A decrease in PD-L1 expression occurred earlier in FAP lesions compared to sporadic ones. CONCLUSIONS: The colorectal ACS is characterized by a progressive loss of adaptive immune infiltrate and by the establishment of a progressively immune cold microenvironment. These changes do not appear to be related with the loss of immunogenicity of tumor cells, or to the onset of an immunosuppressive tumor microenvironment.


Adenocarcinoma/immunology , Adenomatous Polyposis Coli/immunology , B7-H1 Antigen/genetics , Colorectal Neoplasms/immunology , Tumor Microenvironment/immunology , Adaptive Immunity/immunology , Adenocarcinoma/complications , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenomatous Polyposis Coli/complications , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/immunology , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/immunology , CD57 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Count , Cell Lineage/immunology , Colorectal Neoplasms/complications , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Forkhead Transcription Factors/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Male , Middle Aged
10.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Article En | MEDLINE | ID: mdl-34556884

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Cells, Cultured , Female , Gene Expression Regulation/immunology , Immunity, Mucosal/immunology , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Box Domain Proteins/immunology , Transcription Factors/immunology
11.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Article En | MEDLINE | ID: mdl-34556887

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Cell Differentiation/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymphocytes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Box Domain Proteins/immunology , Animals , Cell Lineage/immunology , Female , Lymphoid Tissue/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Helper-Inducer/immunology
12.
J Immunol ; 207(6): 1530-1544, 2021 09 15.
Article En | MEDLINE | ID: mdl-34408011

MHC class I (MHC-I)-restricted CD4+ T cells have long been discovered in the natural repertoire of healthy humans as well as patients with autoimmune diseases or cancer, but the exact origin of these cells remains to be fully characterized. In mouse models, mature peripheral CD8+ T cells have the potential to convert to CD4+ T cells in the mesenteric lymph nodes. This conversion can produce a unique population of MHC-I-restricted CD4+ T cells including Foxp3+ regulatory T cells termed MHC-I-restricted CD4+Foxp3+ T (CI-Treg) cells. In this study we examined the cellular and molecular elements that promote CD8-to-CD4 lineage conversion and the development of CI-Treg cells in mice. Using adoptive transfer and bone marrow chimera experiments, we found that the differentiation of CI-Treg cells was driven by lymph node stromal cell (LNSC)-intrinsic MHC-II expression as opposed to transcytosis of MHC-II from bone marrow-derived APCs. The lineage conversion was accompanied by Runx3 versus ThPOK transcriptional switch. This finding of a new role for LNSCs in vivo led us to develop an efficient tissue culture method using LNSCs to generate and expand CI-Treg cells in vitro. CI-Treg cells expanded in vitro with LNSCs effectively suppressed inflammatory tissue damage caused by pathogenic CD4+ T cells in mouse models of colitis. This study identified a novel role of MHC-II expressed by LNSCs in immune regulation and the potential utilization of LNSCs to generate novel subsets of immune regulatory cells for therapeutic applications.


CD8-Positive T-Lymphocytes/immunology , Cell Lineage/genetics , Colitis/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/metabolism , Lymph Nodes/immunology , Signal Transduction/genetics , Stromal Cells/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer/methods , Animals , Antigen-Presenting Cells/immunology , Cell Lineage/immunology , Cells, Cultured , Disease Models, Animal , Female , Histocompatibility Antigens Class II/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
13.
Immunity ; 54(10): 2288-2304.e7, 2021 10 12.
Article En | MEDLINE | ID: mdl-34437840

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.


Adaptive Immunity/immunology , Cell Lineage/immunology , Herpesviridae Infections/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus
14.
Immunity ; 54(10): 2417-2432.e5, 2021 10 12.
Article En | MEDLINE | ID: mdl-34453879

Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.


Cell Culture Techniques/methods , Cell Lineage/immunology , Hematopoietic Stem Cells/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Antigens, CD34/immunology , Cell Differentiation/immunology , Hematopoietic Stem Cells/cytology , Humans , Lymphocytes/cytology , Single-Cell Analysis/methods
15.
Biomolecules ; 11(8)2021 08 07.
Article En | MEDLINE | ID: mdl-34439835

Increasing evidence has demonstrated that oxidized low-density lipoproteins (oxLDL) and lipopolysaccharide (LPS) enhance accumulation of interleukin (IL)-1 beta-producing macrophages in atherosclerotic lesions. However, the potential synergistic effect of native LDL (nLDL) and LPS on the inflammatory ability and migration pattern of monocyte subpopulations remains elusive and is examined here. In vitro, whole blood cells from healthy donors (n = 20) were incubated with 100 µg/mL nLDL, 10 ng/mL LPS, or nLDL + LPS for 9 h. Flow cytometry assays revealed that nLDL significantly decreases the classical monocyte (CM) percentage and increases the non-classical monocyte (NCM) subset. While nLDL + LPS significantly increased the number of NCMs expressing IL-1 beta and the C-C chemokine receptor type 2 (CCR2), the amount of NCMs expressing the CX3C chemokine receptor 1 (CX3CR1) decreased. In vivo, patients (n = 85) with serum LDL-cholesterol (LDL-C) >100 mg/dL showed an increase in NCM, IL-1 beta, LPS-binding protein (LBP), and Castelli's atherogenic risk index as compared to controls (n = 65) with optimal LDL-C concentrations (≤100 mg/dL). This work demonstrates for the first time that nLDL acts in synergy with LPS to alter the balance of human monocyte subsets and their ability to produce inflammatory cytokines and chemokine receptors with prominent roles in atherogenesis.


CX3C Chemokine Receptor 1/genetics , Cholesterol, LDL/pharmacology , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Receptors, CCR2/genetics , Acute-Phase Proteins/genetics , Acute-Phase Proteins/immunology , Adolescent , Adult , C-Reactive Protein/genetics , C-Reactive Protein/immunology , CX3C Chemokine Receptor 1/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Lineage/drug effects , Cell Lineage/immunology , Cholesterol, HDL/blood , Drug Synergism , Female , Flow Cytometry , Gene Expression , Healthy Volunteers , Humans , Interleukin-1beta/immunology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Middle Aged , Monocytes/cytology , Monocytes/immunology , Primary Cell Culture , Receptors, CCR2/immunology , Triglycerides/blood
16.
J Clin Invest ; 131(20)2021 10 15.
Article En | MEDLINE | ID: mdl-34464357

BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1ß have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1ß. Following IVIG treatment, activated IL-1ß+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1ß can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.


COVID-19/complications , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , Case-Control Studies , Cell Death/immunology , Cell Lineage/immunology , Child , Child, Preschool , Fas Ligand Protein/immunology , Female , Humans , Infant , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/blood , Leukocyte Count , Male , Mucocutaneous Lymph Node Syndrome/blood , Neutrophil Activation , Neutrophils/classification , Neutrophils/immunology , Neutrophils/pathology , Systemic Inflammatory Response Syndrome/blood
17.
Cell Rep Med ; 2(6): 100322, 2021 06 15.
Article En | MEDLINE | ID: mdl-34195685

We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of circulating inflammatory cell types and show that CD101 variants are associated with increased proinflammatory cytokine production by circulating T cells. One category of CD101 variants is associated with a reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alterations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101 variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased prevalence and altered function of T cell subsets.


Antigens, CD/genetics , Cell Lineage/immunology , HIV Infections/immunology , HIV-1/immunology , Mutation , T-Lymphocytes, Regulatory/immunology , Adult , Antigens, CD/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , HIV Infections/transmission , HIV Infections/virology , Humans , Immunity, Innate , Immunophenotyping , Male , Monocytes/immunology , Monocytes/virology , Phenotype , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , T-Lymphocytes, Regulatory/virology
18.
Cell Mol Gastroenterol Hepatol ; 12(5): 1531-1542, 2021.
Article En | MEDLINE | ID: mdl-34303882

Pancreatic ductal adenocarcinoma (PDA), the most common pancreatic cancer, is a nearly universally lethal malignancy. PDA is characterized by extensive infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells. Myeloid cells in the tumor microenvironment inhibit cytotoxic T-cell responses promoting carcinogenesis. Immune checkpoint therapy has not been effective in PDA, most likely because of this robust immune suppression, making it critical to elucidate mechanisms behind this phenomenon. Here, we review myeloid cell infiltration and cellular crosstalk in PDA progression and highlight current therapeutic approaches to target myeloid cell-driven immune suppression.


Immunomodulation , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Biomarkers , Cell Communication , Cell Lineage/immunology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Disease Management , Disease Susceptibility , Drug Resistance, Neoplasm , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Neoplasm Metastasis , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Signal Transduction , Single-Cell Analysis/methods , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
19.
Hepatology ; 74(5): 2774-2790, 2021 11.
Article En | MEDLINE | ID: mdl-34089528

BACKGROUND AND AIMS: HSCs and portal fibroblasts (PFs) are the major sources of collagen-producing myofibroblasts during liver fibrosis, depending on different etiologies. However, the mechanisms by which their dynamic gene expression directs the transition from the quiescent to the activated state-as well as their contributions to fibrotic myofibroblasts-remain unclear. Here, we analyze the activation of HSCs and PFs in CCL4 -induced and bile duct ligation-induced fibrosis mouse models, using single-cell RNA sequencing and lineage tracing. APPROACH AND RESULTS: We demonstrate that HSCs, rather than PFs, undergo dramatic transcriptomic changes, with the sequential activation of inflammatory, migrative, and extracellular matrix-producing programs. The data also reveal that HSCs are the exclusive source of myofibroblasts in CCL4 -treated liver, while PFs are the major source of myofibroblasts in early cholestatic liver fibrosis. Single-cell and lineage-tracing analysis also uncovers differential gene-expression features between HSCs and PFs; for example, nitric oxide receptor soluble guanylate cyclase is exclusively expressed in HSCs, but not in PFs. The soluble guanylate cyclase stimulator Riociguat potently reduced liver fibrosis in CCL4 -treated livers but showed no therapeutic efficacy in bile duct ligation livers. CONCLUSIONS: This study provides a transcriptional roadmap for the activation of HSCs during liver fibrosis and yields comprehensive evidence that the differential transcriptomic features of HSCs and PFs, along with their relative contributions to liver fibrosis of different etiologies, should be considered in developing effective antifibrotic therapeutic strategies.


Hepatic Stellate Cells/immunology , Liver Cirrhosis, Experimental/immunology , Myofibroblasts/immunology , Animals , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/toxicity , Cell Lineage/immunology , Cells, Cultured , Gene Expression Regulation/immunology , Gene Knock-In Techniques , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/pathology , Male , Mice , Mice, Transgenic , Primary Cell Culture , RNA-Seq , Single-Cell Analysis
20.
Eur J Immunol ; 51(7): 1698-1714, 2021 07.
Article En | MEDLINE | ID: mdl-33949677

CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαß+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαß+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.


Chromatin Assembly Factor-1/immunology , Natural Killer T-Cells/immunology , Animals , Cell Differentiation/immunology , Cell Line, Tumor , Cell Lineage/immunology , Chromatin Assembly and Disassembly/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Thymocytes/immunology
...