Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.507
1.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Article En | MEDLINE | ID: mdl-38624215

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Antigens, CD , Antigens, Protozoan , Macrophages , Malaria , Plasmodium yoelii , Animals , Female , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , Cell Membrane/metabolism , Cell Membrane/immunology , Inflammation/immunology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Malaria/immunology , Malaria/parasitology , NF-kappa B/metabolism , NF-kappa B/immunology , Plasmodium yoelii/immunology , Protein Binding , Signal Transduction
2.
Science ; 383(6686): eabm9903, 2024 Mar.
Article En | MEDLINE | ID: mdl-38422126

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Bacteria , Bacterial Infections , Cell Membrane , GTP-Binding Proteins , Innate Immunity Recognition , Humans , Cytokines/chemistry , Electron Microscope Tomography , GTP-Binding Proteins/chemistry , Guanosine Triphosphate/chemistry , Hydrolysis , Immunity, Cellular , Cryoelectron Microscopy , Gasdermins/chemistry , Phosphate-Binding Proteins/chemistry , Protein Conformation , Cell Membrane/chemistry , Cell Membrane/immunology , Caspases, Initiator/chemistry , Bacterial Infections/immunology , Bacteria/immunology
3.
Adv Sci (Weinh) ; 11(17): e2308235, 2024 May.
Article En | MEDLINE | ID: mdl-38353384

Personalized cancer vaccines based on resected tumors from patients is promising to address tumor heterogeneity to inhibit tumor recurrence or metastasis. However, it remains challenge to elicit immune activation due to the weak immunogenicity of autologous tumor antigens. Here, a hybrid membrane cancer vaccine is successfully constructed by membrane fusion to enhance adaptive immune response and amplify personalized immunotherapy, which formed a codelivery system for autologous tumor antigens and immune adjuvants. Briefly, the functional hybrid vesicles (HM-NPs) are formed by hybridizing ginseng-derived extracellular vesicles-like particles (G-EVLPs) with the membrane originated from the resected autologous tumors. The introduction of G-EVLPs can enhance the phagocytosis of autologous tumor antigens by dendritic cells (DCs) and facilitate DCs maturation through TLR4, ultimately activating tumor-specific cytotoxic T lymphocytes (CTLs). HM-NPs can indeed strengthen specific immune responses to suppress tumors recurrence and metastasis including subcutaneous tumors and orthotopic tumors. Furthermore, a long-term immune protection can be obtained after vaccinating with HM-NPs, and prolonging the survival of animals. Overall, this personalized hybrid autologous tumor vaccine based on G-EVLPs provides the possibility of mitigating tumor recurrence and metastasis after surgery while maintaining good biocompatibility.


Cancer Vaccines , Extracellular Vesicles , Neoplasm Recurrence, Local , Panax , Cancer Vaccines/immunology , Animals , Extracellular Vesicles/immunology , Mice , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/prevention & control , Precision Medicine/methods , Disease Models, Animal , Cell Membrane/metabolism , Cell Membrane/immunology , Humans , Neoplasm Metastasis/immunology , Vaccination/methods , Dendritic Cells/immunology , Female , Cell Line, Tumor
4.
Nature ; 608(7921): 168-173, 2022 08.
Article En | MEDLINE | ID: mdl-35896748

Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.


Akkermansia , Homeostasis , Immunity , Phosphatidylethanolamines , Akkermansia/chemistry , Akkermansia/cytology , Akkermansia/immunology , Cell Membrane/chemistry , Cell Membrane/immunology , Cytokines/immunology , Homeostasis/immunology , Humans , Inflammation Mediators/chemical synthesis , Inflammation Mediators/chemistry , Inflammation Mediators/immunology , Phosphatidylethanolamines/chemical synthesis , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/immunology , Structure-Activity Relationship , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/immunology
5.
Proc Natl Acad Sci U S A ; 119(23): e2122386119, 2022 06 07.
Article En | MEDLINE | ID: mdl-35648835

Pneumococcal conjugate vaccines (PCVs) used in childhood vaccination programs have resulted in replacement of vaccine-type with nonvaccine-type pneumococci in carriage and invasive pneumococcal disease (IPD). A vaccine based on highly conserved and protective pneumococcal antigens is urgently needed. Here, we performed intranasal immunization of mice with pneumococcal membrane particles (MPs) to mimic natural nasopharyngeal immunization. MP immunization gave excellent serotype-independent protection against IPD that was antibody dependent but independent of the cytotoxin pneumolysin. Using Western blotting, immunoprecipitation, mass spectrometry, and different bacterial mutants, we identified the conserved lipoproteins MalX and PrsA as the main antigens responsible for cross-protection. Additionally, we found that omitting the variable surface protein and vaccine candidate PspA from MPs enhanced protective immune responses to the conserved proteins. Our findings suggest that MPs containing MalX and PrsA could serve as a platform for pneumococcal vaccine development targeting the elderly and immunocompromised.


Bacterial Proteins , Lipoproteins , Membrane Proteins , Membrane Transport Proteins , Pneumococcal Infections , Pneumococcal Vaccines , Administration, Intranasal , Animals , Bacterial Proteins/immunology , Cell Membrane/immunology , Conserved Sequence , Cross Reactions , Humans , Immunization/methods , Lipoproteins/immunology , Membrane Proteins/immunology , Membrane Transport Proteins/immunology , Mice , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Serogroup , Streptococcus pneumoniae/immunology
6.
Elife ; 112022 02 24.
Article En | MEDLINE | ID: mdl-35200140

Antibody binding to cell surface proteins plays a crucial role in immunity, and the location of an epitope can altogether determine the immunological outcome of a host-target interaction. Techniques available today for epitope identification are costly, time-consuming, and unsuited for high-throughput analysis. Fast and efficient screening of epitope location can be useful for the development of therapeutic monoclonal antibodies and vaccines. Cellular morphology typically varies, and antibodies often bind heterogeneously across a cell surface, making traditional particle-averaging strategies challenging for accurate native antibody localization. In the present work, we have developed a method, SiteLoc, for imaging-based molecular localization on cellular surface proteins. Nanometer-scale resolution is achieved through localization in one dimension, namely, the distance from a bound ligand to a reference surface. This is done by using topological image averaging. Our results show that this method is well suited for antibody binding site measurements on native cell surface morphology and that it can be applied to other molecular distance estimations as well.


Antibodies play a key role in the immune system. These proteins stick to harmful substances, such as bacteria and other disease-causing pathogens, marking them for destruction or blocking their attack. Antibodies are highly selective, and this ability has been used to target particular molecules in research, diagnostics and therapies. Typically, antibodies need to stick to a particular segment, or 'epitope', on the surface of a cell in order to trigger an immune response. Knowing where these regions are can help explain how these immune proteins work and aid the development of more effective drugs and diagnostic tools. One way to identify these sites is to measure the nano-distance between antibodies and other features on the cell surface. To do this, researchers take multiple images of the cell the antibody is attached to using light microscopy. Various statistical methods are then applied to create an 'average image' that has a higher resolution and can therefore be used to measure the distance between these two points more accurately. While this approach works on fixed shapes, like a perfect circle, it cannot handle human cells and bacteria which are less uniform and have more complex surfaces. Here, Kumra Ahnlide et al. have developed a new method called SiteLoc which can overcome this barrier. The method involves two fluorescent probes: one attached to a specific site on the cell's surface, and the other to the antibody or another molecule of interest. These two probes emit different colours when imaged with a fluorescent microscope. To cope with objects that have uneven surfaces, such as cells and bacteria, the two signals are transformed to 'follow' the same geometrical shape. The relative distance between them is then measured using statistical methods. Using this approach, Kumra Ahnlide et al. were able to identify epitopes on a bacterium, and measure distances on the surface of human red blood cells. The SiteLoc system could make it easier to develop antibody-based treatments and diagnostic tools. Furthermore, it could also be beneficial to the wider research community who could use it to probe other questions that require measuring nanoscale distances.


Antibodies, Monoclonal/metabolism , Binding Sites, Antibody , Cell Membrane/metabolism , Epitope Mapping/methods , Membrane Proteins/metabolism , Binding Sites , Cell Membrane/immunology , Epitopes/metabolism , Humans , Ligands , Membrane Proteins/immunology , Models, Molecular
7.
J Biol Chem ; 298(3): 101598, 2022 03.
Article En | MEDLINE | ID: mdl-35063507

CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177pos/mPR3high and CD177neg/mPR3low populations. The CD177pos/mPR3high subset has implications for antineutrophil cytoplasmic autoantibody (ANCA)-associated autoimmune vasculitis, wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here, we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 "blockers") as determined by surface plasmon resonance spectroscopy and used them to test the effect of competing PR3 from the surface of CD177pos neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared nonactivating Fab fragments of a PR3 blocker and nonblocker that bound specifically to CD177pos neutrophils. We observed that Fab blocker clone 40, but not nonblocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177pos neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3-ANCA immunoglobulin G from ANCA-associated autoimmune vasculitis patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3-ANCAs provoked significantly more superoxide production in CD177pos/mPR3high than in CD177neg/mPR3low neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177pos cells to the level of the CD177neg cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3-ANCA diseases.


Autoantigens , GPI-Linked Proteins , Granulomatosis with Polyangiitis , Neutrophils , Receptors, Cell Surface , Antibodies, Antineutrophil Cytoplasmic/immunology , Antibodies, Monoclonal , Autoantigens/immunology , Cell Membrane/immunology , GPI-Linked Proteins/immunology , Granulomatosis with Polyangiitis/immunology , Humans , Isoantigens/metabolism , Myeloblastin/metabolism , Neutrophil Activation , Neutrophils/immunology , Receptors, Cell Surface/immunology , Superoxides/immunology
8.
Sci Rep ; 12(1): 106, 2022 01 07.
Article En | MEDLINE | ID: mdl-34997058

Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing autoimmune disease characterized by the presence of pathogenic autoantibodies, anti-aquaporin 4 (AQP4) antibodies. Recently, HLA-DQA1*05:03 was shown to be significantly associated with NMOSD in a Japanese patient cohort. However, the specific mechanism by which HLA-DQA1*05:03 is associated with the development of NMOSD has yet to be elucidated. In the current study, we revealed that HLA-DQA1*05:03 exhibited significantly higher cell surface expression levels compared to other various DQA1 alleles, and that its expression strongly depended on the amino acid sequence of the α1 domain, with a preference for leucine at position 75. Moreover, in silico analysis indicated that the HLA-DQ encoded by HLA-DQA1*05:03 preferentially presents immunodominant AQP4 peptides, and that the peptide major histocompatibility complexes (pMHCs) are more energetically stable in the presence of HLA-DQA1*05:03 than other HLA-DQA1 alleles. In silico 3D structural models were also applied to investigate the validity of the energetic stability of pMHCs. Taken together, our findings indicate that HLA-DQA1*05:03 possesses a distinct property to play a pathogenic role in the development of NMOSD.


Aquaporin 4/metabolism , Cell Membrane/metabolism , HLA-DQ alpha-Chains/metabolism , Immunodominant Epitopes , Neuromyelitis Optica/metabolism , Amino Acid Sequence , Aquaporin 4/immunology , Autoantibodies/blood , Cell Membrane/immunology , HEK293 Cells , HLA-DQ alpha-Chains/genetics , HLA-DQ alpha-Chains/immunology , Humans , Immunoglobulin G/blood , Models, Molecular , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/genetics , Neuromyelitis Optica/immunology , Protein Binding , Protein Domains
9.
Am J Physiol Renal Physiol ; 322(2): F150-F163, 2022 02 01.
Article En | MEDLINE | ID: mdl-34927448

Proteinuria predicts accelerated decline in kidney function in kidney transplant recipients (KTRs). We hypothesized that aberrant filtration of complement factors causes intraluminal activation, apical membrane attack on tubular cells, and progressive injury. Biobanked samples from two previous studies in albuminuric KTRs were used. The complement-activation split products C3c, C3dg, and soluble C5b-9-associated C9 neoantigen were analyzed by ELISA in urine and plasma using neoepitope-specific antibodies. Urinary extracellular vesicles (uEVs) were enriched by lectin and immunoaffinity isolation and analyzed by immunoblot analysis. Urine complement excretion increased significantly in KTRs with an albumin-to-creatinine ratio of ≥300 mg/g compared with <30 mg/g. Urine C3dg and C9 neoantigen excretion correlated significantly to changes in albumin excretion from 3 to 12 mo after transplantation. Fractional excretion of C9 neoantigen was significantly higher than for albumin, indicating postfiltration generation. C9 neoantigen was detected in uEVs in six of the nine albuminuric KTRs but was absent in non-albuminuric controls (n = 8). In C9 neoantigen-positive KTRs, lectin affinity enrichment of uEVs from the proximal tubules yielded signal for iC3b, C3dg, C9 neoantigen, and Na+-glucose transporter 2 but only weakly for aquaporin 2. Coisolation of podocyte markers and Tamm-Horsfall protein was minimal. Our findings show that albuminuria is associated with aberrant filtration and intratubular activation of complement with deposition of C3 activation split products and C5b-9-associated C9 neoantigen on uEVs from the proximal tubular apical membrane. Intratubular complement activation may contribute to progressive kidney injury in proteinuric kidney grafts.NEW & NOTEWORTHY The present study proposes a mechanistic coupling between proteinuria and aberrant filtration of complement precursors, intratubular complement activation, and apical membrane attack in kidney transplant recipients. C3dg and C5b-9-associated C9 neoantigen associate with proximal tubular apical membranes as demonstrated in urine extracellular vesicles. The discovery suggests intratubular complement as a mediator between proteinuria and progressive kidney damage. Inhibitors of soluble and/or luminal complement activation with access to the tubular lumen may be beneficial.


Albuminuria/immunology , Cell Membrane/immunology , Complement Activation , Complement C3b/urine , Complement Membrane Attack Complex/urine , Epithelial Cells/immunology , Extracellular Vesicles/immunology , Kidney Transplantation/adverse effects , Kidney Tubules, Proximal/immunology , Peptide Fragments/urine , Adolescent , Adult , Aged , Albuminuria/blood , Albuminuria/urine , Cell Membrane/metabolism , Cross-Sectional Studies , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Kidney Tubules, Proximal/metabolism , Middle Aged , Peptide Fragments/blood , Treatment Outcome , Young Adult
10.
Front Immunol ; 12: 742292, 2021.
Article En | MEDLINE | ID: mdl-34887854

For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.


Cell Adhesion/physiology , Leukocytes/enzymology , 5'-Nucleotidase/immunology , 5'-Nucleotidase/physiology , ADAM Proteins/immunology , ADAM Proteins/physiology , ADP-ribosyl Cyclase/immunology , ADP-ribosyl Cyclase/physiology , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/physiology , Antigens, CD/immunology , Antigens, CD/physiology , CD13 Antigens/immunology , CD13 Antigens/physiology , Cell Adhesion/immunology , Cell Membrane/enzymology , Cell Membrane/immunology , Dipeptidyl Peptidase 4/immunology , Dipeptidyl Peptidase 4/physiology , GPI-Linked Proteins/immunology , GPI-Linked Proteins/physiology , Humans , Leukocytes/immunology , Leukocytes/physiology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/physiology , Membrane Proteins/immunology , Membrane Proteins/physiology , Models, Biological
11.
Bull Cancer ; 108(10S): S65-S72, 2021 Oct.
Article Fr | MEDLINE | ID: mdl-34920809

Despite recent therapeutic advances, multiple myeloma remains an incurable disease and the therapeutic options currently available are insufficient in refractory patients. Chimeric antigen receptor (CAR)-expressing T cells are an innovative form of adoptive cell therapy in which T cells are reprogrammed to induce an anti-tumor response. Following the successful use of CAR-T cells in the treatment of other B-cell malignancies, CAR-T-based strategies which target the B cell maturation antigen (BCMA) on the surface of tumor plasma cell are now being used in MM patients. Idecabtagene vicleucel (ide-cel), an anti-BCMA CAR-T which has shown impressive efficacy in heavily pretreated patients, is now approved by both the FDA and EMA and is available in France through a temporary use authorization (ATU) status. However, relapses seem inevitable and strategies to delay the time to progression are being investigated. These include strategies to improve the functional persistence of CAR-T in vivo by enriching for a T memory profile and reducing their immunogenicity. In addition, since changes in BCMA expression may decrease the activity of CAR-T cells in tumor plasma cells, approaches to minimize this escape are also being studied. Finally, antigens other than BCMA on the surface of plasma cells could constitute new targets of interest for recognition by CAR-T cells. The development of CAR-T-based therapies in myeloma could lead to multiple therapeutic innovations and holds promise for eventual prolonged remissions or even cure.


B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Antineoplastic Agents, Immunological/therapeutic use , B-Cell Maturation Antigen/metabolism , Cell Membrane/immunology , Disease Progression , Humans , Immunotherapy, Adoptive/trends , Memory T Cells/immunology , Multiple Myeloma/immunology , Receptors, Chimeric Antigen/therapeutic use , Recurrence , T-Lymphocytes/immunology , Tumor Escape
12.
ACS Appl Mater Interfaces ; 13(47): 55890-55901, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34787393

Effective expansion of T-cells without ex vivo stimulation and maintenance of their antitumor functions in the complex tumor microenvironment (TME) are still daunting challenges in T-cell-based immunotherapy. Here, we developed biomimetic artificial antigen-presenting cells (aAPCs), ultrathin MnOx nanoparticles (NPs) functionalized with T-cell activators (anti-CD3/CD28 mAbs, CD), and tumor cell membranes (CMs) for enhanced lung metastasis immunotherapy. The aAPCs, termed CD-MnOx@CM, not only efficiently enhanced the expansion and activation of intratumoral CD8+ cytotoxic T-cells and dendritic cells after homing to homotypic metastatic tumors but also regulated the TME to facilitate T-cell survival through catalyzing the decomposition of intratumoral H2O2 into O2. Consequently, the aAPCs significantly inhibited the development of lung metastatic nodules and extended the survival of a B16-F10 melanoma metastasis model, while minimizing adverse events. Our work represents a new biomaterial strategy of inhibiting tumor metastasis through targeted TME regulation and in situ T-cell-based immunotherapy.


Antigen-Presenting Cells/immunology , Artificial Cells/immunology , Biomimetic Materials/chemistry , CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Lung Neoplasms/therapy , Melanoma/therapy , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Manganese Compounds/chemistry , Manganese Compounds/immunology , Melanoma/immunology , Mice , Oxides/chemistry , Oxides/immunology , Particle Size , Surface Properties , Tumor Microenvironment
13.
Cell Rep ; 37(5): 109923, 2021 11 02.
Article En | MEDLINE | ID: mdl-34731611

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Cell Membrane/drug effects , Cell Movement/drug effects , Single-Domain Antibodies/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , Camelids, New World/immunology , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endocytosis/drug effects , Epitopes , Exocytosis/drug effects , Protein Binding , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Trypanocidal Agents/immunology , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/ultrastructure , Trypanosomiasis, African/immunology , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
15.
Front Immunol ; 12: 719315, 2021.
Article En | MEDLINE | ID: mdl-34594333

Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.


Antigens, Bacterial/immunology , Cell Membrane/immunology , Glycoconjugates/immunology , Polysaccharides, Bacterial/immunology , Animals , Antigens, Bacterial/chemistry , Carrier Proteins/chemistry , Carrier Proteins/immunology , Cell Membrane/chemistry , Female , Glycoconjugates/chemistry , Immunity , Mice , Models, Animal , Polysaccharides, Bacterial/chemistry , Salmonella typhimurium/immunology , Vaccines/chemistry , Vaccines/immunology
16.
J Lipid Res ; 62: 100129, 2021.
Article En | MEDLINE | ID: mdl-34599996

The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.


COVID-19/immunology , Cell Membrane/immunology , Eicosanoids/immunology , SARS-CoV-2/physiology , Sphingolipids/immunology , Virus Replication/immunology , Humans
17.
Adv Sci (Weinh) ; 8(24): e2102330, 2021 12.
Article En | MEDLINE | ID: mdl-34693653

Immune modulation is one of the most effective approaches in the therapy of complex diseases, including public health emergency. However, most immune therapeutics such as drugs, vaccines, and cellular therapy suffer from the limitations of poor efficacy and adverse side effects. Fortunately, cell membrane-derived nanoparticles (CMDNs) have superior compatibility with other therapeutics and offer new opportunities to push the limits of current treatments in immune modulation. As the interface between cells and outer surroundings, cell membrane contains components which instruct intercellular communication and the plasticity of cytomembrane has significantly potentiated CMDNs to leverage our immune system. Therefore, cell membranes employed in immunomodulatory CMDNs have gradually shifted from natural to engineered. In this review, unique properties of immunomodulatory CMDNs and engineering strategies of emerging CMDNs for immune modulation, with an emphasis on the design logic are summarized. Further, this review points out some pressing problems to be solved during clinical translation and put forward some suggestions on the prospect of immunoregulatory CMDNs. It is anticipated that this review can provide new insights on the design of immunoregulatory CMDNs and expand their potentiation in the precise control of the dysregulated immune system.


Cell Membrane/immunology , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Nanoparticles/therapeutic use , Animals , Disease Models, Animal , Humans , Immunomodulation , Mice
18.
Front Immunol ; 12: 687874, 2021.
Article En | MEDLINE | ID: mdl-34675913

Soluble tumor necrosis factor-α (sTNF-α) plays an important role in colitis-associated cancer (CAC); however, little is known about transmembrane TNF-α (tmTNF-α). Here, we observed an increase in sTNF-α mainly in colitis tissues from an azoxymethane/dextran sodium sulfate (DSS)-induced CAC mouse model whereas tmTNF-α levels were chiefly increased on epithelial cells at the tumor stage. The ratio of intracolonic tmTNF-α/sTNF-α was negatively correlated with the levels of pro-inflammatory mediators (IL-1ß, IL-6, and NO) and M1 macrophages but positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and the level of the anti-inflammatory cytokine IL-10, suggesting an anti-inflammatory effect of tmTNF-α. This effect of tmTNF-α was confirmed again by the induction of resistance to LPS in colonic epithelial cell lines NCM460 and HCoEpiC through the addition of exogenous tmTNF-α or transfection of the tmTNF-α leading sequence that lacks the extracellular segment but retains the intracellular domain of tmTNF-α. A tmTNF-α antibody was used to block tmTNF-α shedding after the first or second round of inflammation induction by DSS drinking to shift the time window of tmTNF-α expression ahead to the inflammation stage. Antibody treatment significantly alleviated inflammation and suppressed subsequent adenoma formation, accompanied by increased apoptosis. An antitumor effect was also observed when the antibody was administered at the malignant phase of CAC. Our results reveal tmTNF-α as a novel molecular marker for malignant transformation in CAC and provide a new insight into blocking the pathological process by targeting tmTNF-α processing.


Adenoma/prevention & control , Anti-Inflammatory Agents/pharmacology , Antibodies/pharmacology , Anticarcinogenic Agents/pharmacology , Cell Membrane/drug effects , Colitis-Associated Neoplasms/prevention & control , Colon/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adenoma/immunology , Adenoma/metabolism , Adenoma/pathology , Animals , Apoptosis/drug effects , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Disease Models, Animal , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Time Factors , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
19.
Front Immunol ; 12: 670205, 2021.
Article En | MEDLINE | ID: mdl-34248949

Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.


Cell Membrane/metabolism , Cholesterol/metabolism , Cytotoxins/metabolism , Gram-Positive Bacteria/metabolism , Gram-Positive Bacterial Infections/metabolism , Mast Cells/metabolism , Animals , Calcium Signaling , Cell Death , Cell Degranulation , Cell Membrane/immunology , Cell Membrane/microbiology , Cell Membrane/pathology , Cellular Microenvironment , Cytokines/metabolism , Gram-Positive Bacteria/immunology , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/pathology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Mast Cells/immunology , Mast Cells/microbiology , Mast Cells/pathology
20.
Front Immunol ; 12: 688674, 2021.
Article En | MEDLINE | ID: mdl-34305921

Cell swelling and membrane blebbing are characteristic of pyroptosis. In the present study, we explored the role of intracellular tension activity in the deformation of pyroptotic astrocytes. Protein nanoparticle-induced osmotic pressure (PN-OP) was found to be involved in cell swelling and membrane blebbing in pyroptotic astrocytes, and was associated closely with inflammasome production and cytoskeleton depolymerization. However, accumulation of protein nanoparticles seemed not to be absolutely required for pyroptotic permeabilization in response to cytoskeleton depolymerization. Gasdermin D activation was observed to be involved in modification of typical pyroptotic features through inflammasome-induced OP upregulation and calcium increment. Blockage of nonselective ion pores can inhibit permeabilization, but not inflammasome production and ion influx in pyroptotic astrocytes. The results suggested that the inflammasomes, as protein nanoparticles, are involved in PN-OP upregulation and control the typical features of pyroptotic astrocytes.


Astrocytes/metabolism , Cell Membrane/metabolism , Cell Size , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Animals , Astrocytes/drug effects , Astrocytes/immunology , Astrocytes/pathology , Calcium Signaling , Caspase 1/genetics , Caspase 1/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/immunology , Cell Membrane/pathology , Cytoskeleton/immunology , Cytoskeleton/metabolism , Cytoskeleton/pathology , Disease Models, Animal , Humans , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nigericin/pharmacology , Osmotic Pressure , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Polyethylene Glycols/pharmacology , Pyroptosis/drug effects , Sepsis/immunology , Sepsis/metabolism , Sepsis/pathology , Stress, Mechanical , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology
...