Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.784
1.
Eur J Pharmacol ; 973: 176511, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38604545

Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose ß-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose ß-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term ß-Lap usage in humans, and promote the use of ß-Lap in high-risk populations.


Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Humans , Mice , Carcinogenesis/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Female , Cell Line
2.
J Hazard Mater ; 471: 134371, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657513

4-NP (4-nonylphenol), a prevalent environmental endocrine disruptor with estrogenic properties, is commonly detected in drinking water and food sources. It poses a significant risk of endocrine disruption, thereby influencing the onset and progression of diverse diseases, including tumorigenesis. However, its specific impact on cervical cancer remains to be fully elucidated. Our study focused on the biological effects of sustained exposure to low-dose 4-NP on human normal cervical epithelial cells (HcerEpic). After a continuous 30-week exposure to 4-NP, the treated cells exhibited a significant malignant transformation, whereas the solvent control group showed limited malignant phenotypes. Subsequent analyses of the metabolomic profiles of the transformed cells unveiled marked irregularities in glutathione metabolism and unsaturated fatty acid metabolism. Analyses of transcriptomic profiles revealed significant activation of the MAPK signaling pathway and suppression of ferroptosis processes in these cells. Furthermore, the expression of MT2A was significantly upregulated following 4-NP exposure. Knockdown of MT2A restored the aberrant activation of the MAPK signaling pathway, elevated antioxidant capacity, ferroptosis inhibition, and ultimately the development of malignant phenotypes that induced by 4-NP in the transformed cells. Mechanistically, MT2A increased cellular antioxidant capabilities and facilitated the removal of toxic iron ions by enhancing the phosphorylation of ERK1/2 and JNK MAPK pathways. The administration of activators and inhibitors of the MAPK pathway confirmed that the MAPK pathway mediated the 4-NP-induced suppression of ferroptosis and, ultimately, the malignant transformation of cervical epithelial cells. Overall, our findings elucidated a dynamic molecular transformation induced by prolonged exposure to 4-NP, and delineated comprehensive biological perspectives underlying 4-NP-induced cervical carcinogenesis. This offers novel theoretical underpinnings for the assessment of the carcinogenic risks associated with 4-NP.


Ferroptosis , Phenols , Uterine Cervical Neoplasms , Ferroptosis/drug effects , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Phenols/toxicity , MAP Kinase Signaling System/drug effects , Endocrine Disruptors/toxicity , Cell Line , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mitogen-Activated Protein Kinases/metabolism
3.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563870

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Carcinogenicity Tests , Cell Transformation, Neoplastic , Colorectal Neoplasms , Environmental Pollutants , Organoids , Animals , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Carcinogenicity Tests/methods , Organoids/drug effects , Organoids/pathology , Mice , Environmental Pollutants/toxicity , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Humans , Carcinogens/toxicity , Intestines/drug effects , Intestines/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/pathology , Dose-Response Relationship, Drug
4.
PLoS One ; 19(4): e0302932, 2024.
Article En | MEDLINE | ID: mdl-38669265

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Aldehydes , Bone Morphogenetic Protein 4 , Coculture Techniques , Colon , Epithelial-Mesenchymal Transition , Fibroblasts , Animals , Colon/cytology , Colon/drug effects , Colon/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/drug effects , Bone Morphogenetic Protein 4/metabolism , Aldehydes/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Phenotype , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology
5.
Biomed Pharmacother ; 174: 116432, 2024 May.
Article En | MEDLINE | ID: mdl-38520868

Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.


Antioxidants , Cell Transformation, Neoplastic , Epigenesis, Genetic , Neoplasms , Oxidative Stress , Oxidative Stress/drug effects , Humans , Epigenesis, Genetic/drug effects , Antioxidants/pharmacology , Animals , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Biological Products/pharmacology , DNA Damage/drug effects
6.
mBio ; 15(1): e0301123, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38117084

IMPORTANCE: Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.


Cell Transformation, Neoplastic , Dexamethasone , Herpesvirus 8, Human , Receptors, Glucocorticoid , Sarcoma, Kaposi , Humans , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Herpesvirus 8, Human/physiology , Inflammation/virology , Interleukin 1 Receptor Antagonist Protein/metabolism , Receptors, Glucocorticoid/metabolism , Sarcoma, Kaposi/drug therapy
7.
Nature ; 616(7955): 159-167, 2023 04.
Article En | MEDLINE | ID: mdl-37020004

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Adenocarcinoma of Lung , Air Pollutants , Air Pollution , Cell Transformation, Neoplastic , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Environmental Exposure , ErbB Receptors/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Particle Size , Cohort Studies , Macrophages, Alveolar/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology
8.
Phytomedicine ; 102: 154159, 2022 Jul 20.
Article En | MEDLINE | ID: mdl-35580441

BACKGROUND: Eriodictyol in citrus fruits, Eriodictyon californicum and several Chinese herbal medicines shows great promise for chronic disease prevention, including cancers. However, its role in chemopreventive activities against breast carcinogenesis is unknown. PURPOSE: In the present study, we investigated the chemopreventive effect and the underlying mechanism of eriodictyol on carcinogens-induced breast carcinogenesis in vivo and in vitro. METHODS: The carcinogenic transformation in MCF10A cells was induced by the environmental carcinogens in vitro. The chemopreventive effect in vivo was evaluated by using the experimental model of 1-methyl-1-nitrosourea (MNU)-induced mammary tumorigenesis in rats. The activation of the PI3K/Akt pathway was detected by western blot assay; the levels of circular RNAs (circRNAs) were measured by qRT-PCR. RESULTS: First, eriodictyol significantly reduces cells viability and induces apoptosis in breast cancer cells in a dose-dependent manner in vitro (P < 0.05). Next, eriodictyol could effectively suppress environmental carcinogens-induced acquisition of carcinogenic properties in human breast epithelial cell MCF10A (P < 0.05). In vivo, eriodictyol administration reduces the incidence of mammary tumor by 50% in carcinogen-treated female rats (P < 0.05). Further study revealed that eriodictyol represses the PI3K/Akt signaling pathway and down-regulates the level of circ_0007503 in breast cancer cells and in breast carcinogenesis (P < 0.01). When the effect of eriodictyol on circ_0007503 was blocked by transfection of a circ_0007503 over-expression plasmid, the cytotoxic effects and the suppression of the PI3K/Akt pathway of eriodictyol in breast cancer cells were significantly reduced (P < 0.05). CONCLUSION: Our data indicated that eriodictyol could effectively suppress breast carcinogenesis in vitro and in vivoThe mechanism may be attributed to targeting circ_0007503 and inhibiting PI3K/Akt pathway.


Breast Neoplasms , Flavanones , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinogens, Environmental/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Female , Flavanones/pharmacology , Humans , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects
9.
Mar Drugs ; 20(3)2022 Mar 20.
Article En | MEDLINE | ID: mdl-35323516

Sea stars or starfish (class Asteroidea) and holothurians or sea cucumbers (class Holothuroidea), belonging to the phylum Echinodermata (echinoderms), are characterized by different sets of glycosidic metabolites: the steroid type in starfish and the triterpene type in holothurians. However, herein we report the isolation of eight new triterpene glycosides, pacificusosides D−K (1−3, 5−9) along with the known cucumarioside D (4), from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The isolated new compounds are closely related to the metabolites of sea cucumbers, and their structures of 1−3 and 5−9 were determined by extensive NMR and ESIMS techniques. Compounds 2, 5, and 8 have a new type of tetrasaccharide chain with a terminal non-methylated monosaccharide unit. Compounds 3, 6, and 9 contain another new type of tetrasaccharide chain, having 6-O-SO3-Glc as one of the sugar units. The cytotoxic activity of 1−9 against non-cancerous mouse epidermal cells JB6 Cl41 and human melanoma cell lines SK-MEL-2, SK-MEL-28, and RPMI-7951 was determined by MTS assay. Compounds 1, 3, 4, 6, and 9 showed potent cytotoxicity against these cell lines, but the cancer selectivity (SI > 9) was observed only against the SK-MEL-2 cell line. Compounds 1, 3, 4, 6, and 9 at the non-toxic concentration of 0.1 µM significantly inhibited neoplastic cell transformation of JB6 Cl41 cells induced by chemical carcinogens (EGF, TPA) or ionizing radiation (X-rays and UVB). Moreover, compounds 1 and 4 at the non-toxic concentration of 0.1 µM possessed the highest inhibiting activity on colony formation among the investigated compounds and decreased the colonies number of SK-MEL-2 cells by 64% and 70%, respectively. Thus, triterpene glycosides 1 and 4 can be considered as prospective cancer-preventive and anticancer-compound leaders.


Anticarcinogenic Agents/pharmacology , Antineoplastic Agents/pharmacology , Glycosides/pharmacology , Starfish/chemistry , Triterpenes/pharmacology , Animals , Anticarcinogenic Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Cell Line , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Erythrocytes/drug effects , Glycosides/isolation & purification , Hemolysis/drug effects , Humans , Mice , Triterpenes/isolation & purification
10.
Cancer Lett ; 530: 29-44, 2022 04 01.
Article En | MEDLINE | ID: mdl-35051531

The DNA damage response (DDR) pathway generally protects against genome instability, and defects in DDR have been exploited therapeutically in cancer treatment. We have reported that histone demethylase PHF8 demethylates TOPBP1 K118 mono-methylation (K118me1) to drive the activation of ATR kinase, one of the master regulators of replication stress. However, whether dysregulation of this physiological signalling is involved in tumorigenesis remains unknown. Here, we showed PHF8-promoted TOPBP1 demethylation is clinically associated with breast tumorigenesis and patient survival. Mammary gland tumors from Phf8 knockout mice grow slowly and exhibit higher level of K118me1, lower ATR activity, and increased chromosomal instability. Importantly, we found that disruption of PHF8-TOPBP1 axis suppresses breast tumorigenesis and creates a breast tumor-specific vulnerability to PARP inhibitor (PARPi) and platinum drug. CRISPR/Cas9 mutation modelling of the deleted or truncated mutation of PHF8 in clinical tumor samples demonstrated breast tumor cells expressing the mimetic variants are more vulnerable to PARPi. Together, our study supports the pursuit of PHF8-TOPBP1 signalling pathway as promising avenues for targeted therapies of PHF8-TOPBP1 proficient tumors, and provides proof-of-concept evidence for loss-of-function of PHF8 as a therapeutic indicator of PARPis.


Breast Neoplasms/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Breast Neoplasms/drug therapy , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Female , Genomic Instability/drug effects , Genomic Instability/physiology , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
11.
Molecules ; 27(2)2022 Jan 12.
Article En | MEDLINE | ID: mdl-35056792

Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.


Breast Neoplasms/metabolism , Breast Neoplasms/prevention & control , Olive Oil/chemistry , Olive Oil/pharmacology , Animals , Breast Neoplasms/diet therapy , Breast Neoplasms/epidemiology , Cell Transformation, Neoplastic/drug effects , Diet, Mediterranean , Female , Humans , Mammary Neoplasms, Experimental/diet therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/prevention & control
12.
Toxicol Appl Pharmacol ; 436: 115884, 2022 02 01.
Article En | MEDLINE | ID: mdl-35031324

Arsenic (As3+), a metalloid abundant in environment, is classified as a group I carcinogen associated with several common human cancers, including cancers in lung, skin, bladder, liver, and prostate (Wei et al., 2019). The mechanisms of As3+-induced carcinogenesis had been extensively studied, and different mechanisms might be involved in different types of cancer (Wei et al., 2019). Recent studies showed that exposure to a high dose of arsenic is able to induce lung cancer. Meanwhile, prolonged exposure to a low concentration of arsenic can increase the risk of lung cancer also (Liao et al., 2009; Fernández et al., 2012). Emerging evidence indicated that prolonged exposure to arsenic promotes malignant transformation and some of the transformed cells have cancer-stem-like properties (Ngalame et al., 2014). In the present report, we revealed that exposure to As3+ for short time period inhibited tyrosine-705 phosphorylation of signal transducer and activator of transcription 3 (pSTAT3Y705) and induced Src homology region 2 domain-containing phosphatase-1 (SHP-1) in bronchial epithelial cell line, BEAS-2B. In addition, we found that long term exposure of the cells to As3+ activates phosphorylation of STAT3 at serine 727 (pSTAT3S727) as well as pSTAT3Y705. Moreover, As3+ is able to induce the expression of miRNA-21 (miR-21) and decrease the expression of PDCD4. Taken together, our data suggest that activation of STAT3 and induction of miR-21 are important contributing factors to the reduced expression of PDCD4, which may play significant role in As3+-induced transformation of BEAS-2B cells.


Arsenic/adverse effects , Bronchi/drug effects , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Apoptosis Regulatory Proteins/genetics , Bronchi/metabolism , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , RNA-Binding Proteins/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/genetics
13.
AAPS J ; 24(1): 30, 2022 01 18.
Article En | MEDLINE | ID: mdl-35043283

Fucoxanthin (FX) is a carotenoid with many pharmaceutical properties due to its antioxidant/anti-inflammatory and epigenetic effects. NFE2L2 is involved in the defense against oxidative stress/inflammation-mediated diseases, like anticancer effects elicited by phytochemicals including FX. However, the role of FX and NFE2L2 in metabolic rewiring, epigenomic reprogramming, and transcriptomic network in blocking pro-tumorigenic signaling and eliciting cancer-protective effects remains unknown. Herein, we utilized multi-omics approaches to evaluate the role of NFE2L2 and the impact of FX on tumor promoter TPA-induced skin cell transformation. FX blocked TPA-induced ROS and oxidized GSSG/reduced GSH in Nfe2l2wild-type(WT) but not Nfe2l2-knockdown (KD) cells. Both Nfe2l2 KD and TPA altered cellular metabolisms and metabolites which are tightly coupled to epigenetic machinery. The suppressive effects of FX on TPA-enhancedSAM/SAH was abrogated by Nfe2l2 KD indicating Nfe2l2 plays a critical role in FX-mediated metabolic rewiring and its potential consequences on epigenetic reprogramming. Epigenomic CpG methyl-seq revealed that FX attenuated TPA-induced differentially methylated regions (DMRs) of Uhrf1 and Dnmt1 genes. Transcriptomic RNA-seq showed that FX abrogated TPA-induced differentially expressed genes (DEGs) of Nfe2l2-related genes Nqo1, Ho1, and Keap1. Associative analysis of DEGs and DMRs identified that the mRNA expressions of Uhrf1 and Dnmt1 were correlated with the promoter CpG methylation status. Chromatin immunoprecipitation assay showed that FX restored Uhrf1 expression by regulating H3K27Me3 enrichment in the promoter region. In this context, FX/Nfe2l2's redox signaling drives metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the protection of TPA-induced JB6 cellular transformation skin cancer model. Graphical abstract.


Epigenesis, Genetic , NF-E2-Related Factor 2/genetics , Skin Neoplasms/prevention & control , Xanthophylls/pharmacology , Animals , Antioxidants/pharmacology , Cell Line , Cell Transformation, Neoplastic/drug effects , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Mice , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tetradecanoylphorbol Acetate
14.
Semin Cancer Biol ; 79: 83-90, 2022 02.
Article En | MEDLINE | ID: mdl-32920125

Several studies have shown that cancer cells can be "phenotypically reversed", thus achieving a "tumor reversion", by losing malignant hallmarks as migrating and invasive capabilities. These findings suggest that genome activity can switch to assume a different functional configuration, i.e. a different Gene Regulatory Network pattern. Indeed, once "destabilized", cancer cells enter into a critical transition phase that can be adequately "oriented" by yet unidentified morphogenetic factors - acting on both cells and their microenvironment - that trigger an orchestrated array of structural and epigenetic changes. Such process can bypass genetic abnormalities, through rerouting cells toward a benign phenotype. Oocytes and embryonic tissues, obtained by animals and humans, display such "reprogramming" capability, as a number of yet scarcely identified embryo-derived factors can revert the malignant phenotype of several types of tumors. Mechanisms involved in the reversion process include the modification of cell-microenvironment cross talk (mostly through cytoskeleton reshaping), chromatin opening, demethylation, and epigenetic changes, modulation of biochemical pathways, comprising TCTP-p53, PI3K-AKT, FGF, Wnt, and TGF-ß-dependent cascades. Results herein discussed promise to open new perspectives not only in the comprehension of cancer biology but also toward different therapeutic options, as suggested by a few preliminary clinical studies.


Cellular Reprogramming Techniques , Cellular Reprogramming/genetics , Epigenesis, Genetic/genetics , Neoplasms/genetics , Neoplasms/therapy , Cell Transformation, Neoplastic/drug effects , Chromatin Assembly and Disassembly/genetics , Cytoskeleton/genetics , DNA Demethylation , Humans , Neoplasms/pathology , Tumor Microenvironment/physiology
15.
Leukemia ; 36(2): 492-506, 2022 02.
Article En | MEDLINE | ID: mdl-34564700

Spred1 is highly expressed in normal hematopoietic stem cells (HSCs). Lack of Spred1 function has been associated with aberrant hematopoiesis and acute leukemias. In chronic myelogenous leukemia (CML), Spred1 is reduced in patients with accelerated phase (AP) or blast crisis (BC) CML, thereby suggesting that deficit of this protein may contribute to disease transformation. In fact, Spred1 knockout (KO) in SCLtTA/BCR-ABL CML mice either globally, or restricted to hematopoietic cells (i.e., HSCs) or to endothelial cells (ECs), led to transformation of chronic phase (CP) CML into AP/BC CML. Upon BCR-ABL induction, all three Spred1 KO CML models showed AP/BC features. However, compared with global Spred1 KO, the AP/BC phenotypes of HSC-Spred1 KO and EC-Spred1 KO CML models were attenuated, suggesting a concurrent contribution of Spred1 deficit in multiple compartments of the leukemic bone marrow niche to the CML transformation. Spred1 KO, regardless if occurred in HSCs or in ECs, increased miR-126 in LSKs (Lin-Sca-1+c-Kit+), a population enriched in leukemic stem cells (LSCs), resulting in expansion of LSCs, likely through hyperactivation of the MAPK/ERK pathway that augmented Bcl-2 expression and stability. This ultimately led to enhancement of Bcl-2-dependent oxidative phosphorylation that supported homeostasis, survival and activity of LSCs and drove AP/BC transformation.


Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/physiology , Cell Transformation, Neoplastic/pathology , Drug Resistance, Neoplasm , Hematopoietic Stem Cells/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology
16.
Anticancer Drugs ; 33(1): e720-e723, 2022 01 01.
Article En | MEDLINE | ID: mdl-34348357

Histological transformation into squamous cell carcinoma (SCC) is a rare mechanism of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Its pathophysiology remains unclear and its management is particularly challenging. We report on tumor progression with SCC histological transformation associated with the T790M mutation in a patient with stage IV bronchial adenocarcinoma with an L858R mutation of the EGFR gene and treated with gefitinib. We will discuss the importance of liquid and tumor biopsy in the diagnostic management of resistance mechanisms as well as therapeutic management options.


Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Lung Neoplasms/pathology , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Female , Gefitinib/therapeutic use , Humans , Lung Neoplasms/drug therapy , Mutation , Neoplasm Staging , Protein Kinase Inhibitors/therapeutic use
17.
Dig Dis Sci ; 67(1): 134-145, 2022 01.
Article En | MEDLINE | ID: mdl-33528688

INTRODUCTION: Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. TGFß1 has been the mostly accepted factor to fuel normal fibroblasts transformation into CAFs. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is thought to play an important role in fibroblasts activation induced by TGFß1. The aim of this study is to investigate the potential role of CaMKII in TGFß1-induced fibroblasts activation and CAF-like differentiation. Cross talk between CaMKII-dependent fibroblasts and colon cancer in colon cancer progression also was addressed RESULTS: Immunostaining demonstrated that in colon cancer stroma, CaMKII overexpressed in stromal CAFs. In vitro, TGFß1 increased CAF markers expression in human colon fibroblasts CCD-18Co, but not in CaMKII depletion fibroblasts. CaMKII knockdown by CaMKII shRNA significantly inhibited TGFß1-induced fibroblasts activation and CAF-like differentiation. Smad3, AKT, and MAPK were targeted in TGFß1-CaMKII-mediated pathway. Human colon cancer cell line HCT-116 activated fibroblasts directly, whereas CaMKII depletion dragged CCD-18Co fibroblasts undergoing CAF-associated trans-differentiation. Furthermore, increased proliferation, migration, and invasion of colon cancer cells were stimulated when co-cultured with normal fibroblasts, but not with CaMKII depletion fibroblasts. CONCLUSIONS: These findings provide evidence that CaMKII is a critical mediator in TGFß1-induced fibroblasts activation and is involved in the cross talk with colon cancer cells. CaMKII is a potentially effective target for future treatment of colon cancer.


Cancer-Associated Fibroblasts/metabolism , Cell Transformation, Neoplastic/metabolism , Colonic Neoplasms , Transforming Growth Factor beta1/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Differentiation , Cell Movement , Cell Transformation, Neoplastic/drug effects , Cellular Microenvironment , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Discovery , Gene Knockdown Techniques , HCT116 Cells , Humans , RNA, Small Interfering/metabolism
18.
Mol Med Rep ; 25(2)2022 02.
Article En | MEDLINE | ID: mdl-34913065

Hepatocellular carcinoma is a malignancy with poor clinical prognosis. Hepatic oval cells (HOCs) tend to differentiate into cancerous hepatocellular carcinoma cells (HCCs) in the tumor microenvironment. The purpose of the present study was to explore the role of kangxianruangan granule (KXRG)­containing serum in inhibiting the differentiation of HOCs into HCCs via the Wnt­1/ß­catenin signaling pathway. N­methyl­N'­nitro­N­nitrosoguanidine (MNNG) was applied to induce the transformation of the rat HOC cell line WB­F344 into HCCs. The overexpression plasmid, Wnt­1­up, was utilized to increase Wnt­1 expression. Subsequently, high, medium and low concentrations of KXRG were applied to MNNG­treated WB­F344 cells to assess the inhibitory effect of KXRG on cell differentiation. Flow cytometry was conducted to detect the cell cycle distribution, apoptotic rate and expression of cytokeratin­19 (CK­19) protein in cells. An immunofluorescence double staining protocol was used to detect the expression of Wnt­1 and ß­catenin. ELISAs were performed to detect α fetoprotein in the cell supernatants. Reverse transcription­quantitative PCR and western blotting were conducted to detect the mRNA and protein expression levels of Wnt­1, ß­catenin, Cyclin D1, C­myc, matrix metalloproteinase­7 (MMP­7), Axin2 and epithelial cell adhesion molecule (EpCAM) in cells. Compared with the normal group, the apoptotic rate, proportion of S phase cells, concentration of AFP in the cell supernatant, level of CK­19 protein, and mRNA and protein expression levels of Wnt­1, ß­catenin, Cyclin D1, C­myc, MMP­7, Axin2 and EpCAM were all significantly increased in the model group. Addition of KXRG significantly reduced the aforementioned indicators compared with the model group. Moreover, Wnt­1 overexpression further increased the aforementioned indicators compared with the model group, whereas KXRG significantly inhibited these effects. The results indicated that KXRG inhibited the differentiation of HOCs into HCCs via the Wnt­1/ß­catenin signaling pathway, which suggested the potential clinical application of KXRG for the prevention of hepatocellular carcinoma.


Carcinoma, Hepatocellular/prevention & control , Cell Transformation, Neoplastic/drug effects , Drugs, Chinese Herbal/administration & dosage , Liver Neoplasms, Experimental/prevention & control , Wnt Signaling Pathway/drug effects , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Humans , Liver/cytology , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Male , Methylnitronitrosoguanidine/toxicity , Rats , Tumor Microenvironment/drug effects
19.
Cancer Sci ; 113(2): 478-488, 2022 Feb.
Article En | MEDLINE | ID: mdl-34826159

The aim of this study was to: (a) explore the potential mechanism of cancer cell sensitivity to cisplatin, docetaxel, and 5-fluorouracil (TPF) in oral squamous cell carcinoma (OSCC) patients overexpressing growth differentiation factor 15 (GDF15); and (b) identify potential alternative agents for patients who might not benefit from inductive TPF chemotherapy. The results indicated that OSCC cells overexpressing GDF15 were sensitive to TPF through a caspase-9-dependent pathway both in vitro and in vivo. Immunoprecipitation combined with mass spectrometry revealed that the erbB2 protein was a potential GDF15-binding protein, which was verified by coimmunoprecipitation. Growth differentiation factor 15 overexpression promoted OSCC cell proliferation through erbB2 phosphorylation, as well as downstream AKT and Erk signaling pathways. When GDF15 expression was blocked, the phosphorylation of both the erbB2 and AKT/Erk pathways was downregulated. When OSCC cells with GDF15 overexpression were treated with the erbB2 phosphorylation inhibitor, CI-1033, cell proliferation and xenograft growth colony formation were significantly blocked (P < .05). Thus, GDF15-overexpressing OSCC tumors are sensitive to TPF chemoagents through caspase-9-dependent pathways. Growth differentiation factor 15 overexpression promotes OSCC proliferation through erbB2 phosphorylation. Thus, ErbB2 inhibitors could represent potential targeted drugs or an alternative therapy for OSCC patients with GDF15 overexpression.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Growth Differentiation Factor 15/metabolism , Mouth Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Animals , Apoptosis , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cisplatin/pharmacology , Fluorouracil/pharmacology , Humans , Mice , Morpholines/pharmacology , Phosphorylation/drug effects , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction/drug effects , Taxoids/pharmacology
20.
Cancer Genomics Proteomics ; 19(1): 12-18, 2022.
Article En | MEDLINE | ID: mdl-34949655

BACKGROUND/AIM: Methionine addiction is a fundamental and general hallmark of cancer, termed the Hoffman effect. Methionine addiction is due to excessive use of and dependence on methionine by cancer cells. In the present report, we correlated the extent of methionine addiction and degree of malignancy with the amount and stability of methylated histone H3 lysine marks. MATERIALS AND METHODS: We established low- and high-malignancy variants from a parental human pancreatic-cancer cell line and compared their sensitivity to methionine restriction and histone H3 lysine methylation status. RESULTS: A low-malignancy, low-methionine-addiction revertant of the parental pancreatic-cancer cell line had less methylated H3K9me3 and was less sensitive to methionine restriction effected by recombinant methioninase (rMETase) than the parental cell line. A high-malignancy variant of the pancreatic cancer cell line had increased methylated H3K9me3 and was more sensitive to methionine restriction by rMETase with regard to inhibition of proliferation and to instability of histone H3 lysine methylation than the parental cell line. Orthotopic malignancy in nude mice was reduced in the low-methionine-addiction revertant and greater in the high-malignancy variant than in the parental cell line. CONCLUSION: The present study indicates that the degree of malignancy is linked to the extent of methionine addiction and the level and instability of trimethylation of histone H3, suggesting these phenomena are linked as a fundamental basis of oncogenic transformation.


Cell Transformation, Neoplastic/genetics , Histones/metabolism , Methionine/metabolism , Pancreatic Neoplasms/genetics , Animals , Carbon-Sulfur Lyases/pharmacology , Carbon-Sulfur Lyases/therapeutic use , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Histone Code/drug effects , Humans , Lysine/metabolism , Methylation/drug effects , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Tumor Burden , Xenograft Model Antitumor Assays
...