Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.578
1.
J Transl Med ; 22(1): 437, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720345

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Durapatite , Glycolysis , Macrophages , Oxidative Phosphorylation , Rats, Sprague-Dawley , Animals , Durapatite/chemistry , Macrophages/metabolism , Macrophages/drug effects , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Rats , Swine , Cell Proliferation/drug effects , Male , Osteogenesis/drug effects , Skull/pathology , Skull/drug effects , Mice , Cellular Microenvironment/drug effects , RAW 264.7 Cells , Bone and Bones/metabolism , Bone and Bones/drug effects
2.
Sci Rep ; 14(1): 10345, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710795

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Cell Differentiation , Coculture Techniques , Osteoblasts , Humans , Osteoblasts/metabolism , Osteoblasts/cytology , Cellular Microenvironment , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Osteogenesis , Cell Aggregation , Cells, Cultured
3.
Sci Rep ; 14(1): 10365, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710778

Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.


Fibroblasts , Ion Channels , Mechanotransduction, Cellular , Membrane Proteins , Animals , Ion Channels/metabolism , Rats , Fibroblasts/metabolism , Fibroblasts/cytology , Cells, Cultured , Calcium/metabolism , Myofibroblasts/metabolism , Myofibroblasts/physiology , Myocardium/metabolism , Myocardium/cytology , Cellular Microenvironment
4.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Article En | MEDLINE | ID: mdl-38716832

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Androgens , Follicular Fluid , Granulosa Cells , Hyperandrogenism , Macrophages , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Female , Granulosa Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Hyperandrogenism/metabolism , Adult , Follicular Fluid/metabolism , Androgens/metabolism , Cells, Cultured , Macrophage Activation , Cellular Microenvironment , Coculture Techniques , Cell Differentiation
5.
Immunol Cell Biol ; 102(5): 381-395, 2024.
Article En | MEDLINE | ID: mdl-38629182

Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.


Cell Differentiation , Cellular Microenvironment , Kupffer Cells , Macrophages , Phenotype , Kupffer Cells/metabolism , Kupffer Cells/cytology , Macrophages/metabolism , Animals , Monocytes/metabolism , Monocytes/cytology , Hepatocyte Growth Factor/metabolism , Endothelial Cells/metabolism , Coculture Techniques , Humans , Cell Proliferation , Cells, Cultured , Liver/cytology , Liver/metabolism , Mice
6.
Curr Top Dev Biol ; 158: 179-201, 2024.
Article En | MEDLINE | ID: mdl-38670705

The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.


Cellular Microenvironment , Extracellular Matrix , Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/metabolism , Extracellular Matrix/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Adaptation, Physiological , Stem Cell Niche/physiology , Regeneration/physiology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Stem Cells/cytology , Stem Cells/physiology
7.
Methods Mol Biol ; 2803: 3-12, 2024.
Article En | MEDLINE | ID: mdl-38676881

The extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications. Here, we describe an optimized protocol for the efficient decellularization of the human myocardium to generate 3D scaffolds of well-preserved cardiac extracellular matrix that can be used for in vitro or in vivo studies.


Decellularized Extracellular Matrix , Myocardium , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Myocardium/cytology , Myocardium/metabolism , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Cellular Microenvironment
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660875

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Mesenchymal Stem Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Mice , Female , Mesenchymal Stem Cells/cytology , Bone Marrow Cells/cytology , Cellular Microenvironment , Bone Marrow , Rats
9.
Anal Chem ; 96(16): 6321-6328, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38595097

Small extracellular vesicles (sEVs) are heterogeneous biological nanoparticles (NPs) with wide biomedicine applications. Tracking individual nanoscale sEVs can reveal information that conventional microscopic methods may lack, especially in cellular microenvironments. This usually requires biolabeling to identify single sEVs. Here, we developed a light scattering imaging method based on dark-field technology for label-free nanoparticle diffusion analysis (NDA). Compared with nanoparticle tracking analysis (NTA), our method was shown to determine the diffusion probabilities of a single NP. It was demonstrated that accurate size determination of NPs of 41 and 120 nm in diameter is achieved by purified Brownian motion (pBM), without or within the cell microenvironments. Our pBM method was also shown to obtain a consistent size estimation of the normal and cancerous plasma-derived sEVs without and within cell microenvironments, while cancerous plasma-derived sEVs are statistically smaller than normal ones. Moreover, we showed that the velocity and diffusion coefficient are key parameters for determining the diffusion types of the NPs and sEVs in a cancerous cell microenvironment. Our light scattering-based NDA and pBM methods can be used for size determination of NPs, even in cell microenvironments, and also provide a tool that may be used to analyze sEVs for many biomedical applications.


Extracellular Vesicles , Extracellular Vesicles/chemistry , Humans , Light , Nanoparticles/chemistry , Scattering, Radiation , Cellular Microenvironment , Particle Size , Diffusion , Tumor Microenvironment , Cell Line, Tumor , Motion
10.
Sci Adv ; 10(17): eadm7164, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657071

Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.


Cellular Microenvironment , Hydrogels , Mesenchymal Stem Cells , Regeneration , Tendons , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tendons/metabolism , Tendons/cytology , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Rats, Sprague-Dawley , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Male , Printing, Three-Dimensional , Myotendinous Junction
11.
Front Immunol ; 15: 1363185, 2024.
Article En | MEDLINE | ID: mdl-38660297

Extracellular vesicles (EVs) have important roles as mediators of cell-to-cell communication, with physiological functions demonstrated in various in vivo models. Despite advances in our understanding of the biological function of EVs and their potential for use as therapeutics, there are limitations to the clinical approaches for which EVs would be effective. A primary determinant of the biodistribution of EVs is the profile of proteins and other factors on the surface of EVs that define the tropism of EVs in vivo. For example, proteins displayed on the surface of EVs can vary in composition by cell source of the EVs and the microenvironment into which EVs are delivered. In addition, interactions between EVs and recipient cells that determine uptake and endosomal escape in recipient cells affect overall systemic biodistribution. In this review, we discuss the contribution of the EV donor cell and the role of the microenvironment in determining EV tropism and thereby determining the uptake and biological activity of EVs.


Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Animals , Cell Communication , Cellular Microenvironment
12.
Development ; 151(20)2024 Oct 15.
Article En | MEDLINE | ID: mdl-38572957

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Ovary , Spermatozoa , Animals , Male , Female , Spermatozoa/metabolism , Ovary/metabolism , Fertilization , Viviparity, Nonmammalian , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Fishes/metabolism , Cellular Microenvironment , Multiomics
13.
J Clin Invest ; 134(10)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512413

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Bone Remodeling , Glucocorticoids , Osteogenesis , Animals , Mice , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Bone Remodeling/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Fatty Acids/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/immunology , Cellular Microenvironment/drug effects
14.
J Endocrinol ; 261(2)2024 May 01.
Article En | MEDLINE | ID: mdl-38470178

For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e. the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group's finding was also one of the milestones in understanding the mechanism of nonvesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondrion-associated multiprotein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule-synthesizing complex.


Phosphoproteins , Steroids , Phosphoproteins/metabolism , Cholesterol/metabolism , Cellular Microenvironment
15.
Hum Reprod ; 39(5): 1023-1041, 2024 May 02.
Article En | MEDLINE | ID: mdl-38511208

STUDY QUESTION: How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases? SUMMARY ANSWER: During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells. WHAT IS KNOWN ALREADY: Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations. How OS impacts the glandular, stromal, immune, and vascular compartments of the endometrium, in the periovulatory period as compared to the window of implantation, is unknown. STUDY DESIGN, SIZE, DURATION: This prospective cohort study carried out between 2020 and 2022 included 25 subjects undergoing OS and 25 subjects in natural menstrual cycles. Endometrial biopsies were performed in the proliferative, periovulatory, and mid-secretory phases. PARTICIPANTS/MATERIALS, SETTING, METHODS: Blood samples were processed to determine serum estradiol and progesterone levels. Both the endometrial transcriptome and the principal cellular compartments of the endometrium, including glands, stroma, immune, and vasculature, were evaluated by examining endometrial dating, differential gene expression, protein expression, cell populations, and the three-dimensional structure in endometrial tissue. Mann-Whitney U tests, unpaired t-tests or one-way ANOVA and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: In the periovulatory period, OS induced high levels of differential gene expression, glandular-stromal dyssynchrony, and an increase in both glandular epithelial volume and the frequency of endometrial monocytes/macrophages. In the window of implantation during the mid-secretory phase, OS induced changes in endometrial immune cells, with a greater frequency of B cells and a lower frequency of CD4 effector T cells. LARGE SCALE DATA: The data underlying this article have been uploaded to the Genome Expression Omnibus/National Center for Biotechnology Information with accession number GSE220044. LIMITATIONS, REASONS FOR CAUTION: A limited number of subjects were included in this study, although the subjects within each group, natural cycle or OS, were homogenous in their clinical characteristics. The number of subjects utilized was sufficient to identify significant differences; however, with a larger number of subjects and additional power, we may detect additional differences. Another limitation of the study is that proliferative phase biopsies were collected in natural cycles, but not in OS cycles. Given that the OS cycle subjects did not have known endometrial factor infertility, and the comparisons involved subjects who had a similar and robust response to stimulation, the findings are generalizable to women with a normal response to OS. WIDER IMPLICATIONS OF THE FINDINGS: OS substantially altered the periovulatory phase endometrium, with fewer transcriptomic and cell type-specific changes in the mid-secretory phase. Our findings show that after OS, the endometrial microenvironment in the window of implantation possesses many more similarities to that of a natural cycle than does the periovulatory endometrium. Further investigation of the immune compartment and the functional significance of this cellular compartment under OS conditions is warranted. STUDY FUNDING/COMPETING INTERESTS: Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (R01AI148695 to A.M.B. and N.C.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD109152 to R.A.), and the March of Dimes (5-FY20-209 to R.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or March of Dimes. All authors declare no conflict of interest.


Endometrium , Ovulation Induction , Transcriptome , Humans , Female , Endometrium/metabolism , Adult , Cellular Microenvironment , Prospective Studies , Estradiol/blood , Embryo Implantation/physiology , Progesterone/blood , Progesterone/metabolism , Pregnancy , Menstrual Cycle
16.
Chem Asian J ; 19(8): e202400056, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38430218

Ferroptosis is a recently identified form of regulated cell death characterized by iron accumulation and lipid peroxidation. Numerous functions for ferroptosis have been identified in physiological as well as pathological processes, most notably in the treatment of cancer. The intricate balance of redox homeostasis is profoundly altered during ferroptosis, leading to alteration in cellular microenvironment. One such microenvironment is viscosity among others such as pH, polarity, and temperature. Therefore, understanding the dynamics of ferroptosis associated viscosity levels within organelles is crucial. To date, there are a very few reviews that detects ferroptosis assessing reactive species. In this review, we have summarized organelle's specific fluorescent probes that detects dynamics of microviscosity during ferroptosis. Also, we offer the readers an insight of their design strategy, photophysics and associated bioimaging concluding with the future perspective and challenges in the related field.


Cellular Microenvironment , Ferroptosis , Fluorescent Dyes , Organelles , Humans , Fluorescent Dyes/chemistry , Viscosity , Oxidation-Reduction , Animals , Organelles/chemistry
17.
Cell Rep Methods ; 4(4): 100743, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38554703

Tissue infiltration by circulating leukocytes occurs via adhesive interactions with the local vasculature, but how the adhesive quality of circulating cells guides the homing of specific phenotypes to different vascular microenvironments remains undefined. We developed an optofluidic system enabling fluorescent labeling of photoactivatable cells based on their adhesive rolling velocity in an inflamed vasculature-mimicking microfluidic device under physiological fluid flow. In so doing, single-cell level multidimensional profiling of cellular characteristics could be characterized and related to the associated adhesive phenotype. When applied to CD8+ T cells, ligand/receptor expression profiles and subtypes associated with adhesion were revealed, providing insight into inflamed tissue infiltration capabilities of specific CD8+ T lymphocyte subsets and how local vascular microenvironmental features may regulate the quality of cellular infiltration. This methodology facilitates rapid screening of cell populations for enhanced homing capabilities under defined biochemical and biophysical microenvironments, relevant to leukocyte homing modulation in multiple pathologies.


CD8-Positive T-Lymphocytes , Cell Adhesion , Phenotype , Single-Cell Analysis , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Microenvironment/immunology , Inflammation/immunology , Inflammation/pathology , Lab-On-A-Chip Devices , Single-Cell Analysis/methods
18.
Electromagn Biol Med ; 43(1-2): 46-60, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38329038

This study aimed to assess PEMF in a rat model of senile osteoporosis and its relationship with NLRP3-mediated low-grade inflammation in the bone marrow microenvironment. A total of 24 Sprague Dawley (SD) rats were included in this study. Sixteen of them were 24-month natural-aged male SD rats, which were randomly distributed into the Aged group and the PEMF group (n = 8 per group). The remaining 8 3-month -old rats were used as the Young positive control group (n = 8). Rats in the PEMF group received 12 weeks of PEMF with 40 min/day, five days per week, while the other rats received placebo PEMF intervention. Bone mineral density/microarchitecture, serum levels of CTX-1 and P1CP, and NLRP3-related signaling genes and proteins in rat bone marrow were then analyzed. The 12-week of PEMF showed significant mitigation of aging-induced bone loss and bone microarchitecture deterioration, i.e. PEMF increased the bone mineral density of the proximal femur and L5 vertebral body and improved parameters of the proximal tibia and L4 vertebral body. Further analysis showed that PEMF reversed aging-induced bone turnover, specifically, decreased serum CTX-1 and elevated serum P1CP. Furthermore, PEMF also dramatically inhibited NLRP3-mediated low-grade inflammation in the bone marrow, i.e. PEMF inhibited the levels of NLRP3, proCaspase1, cleaved Caspase1, IL-1ß, and GSDMD-N. The study demonstrated that PEMF could mitigate the aging-induced bone loss and reverses the deterioration of bone microarchitecture probably through inhibiting NLRP3-mediated low-grade chronic inflammation to improve the inflammatory bone microenvironment in aged rats.


Bone Density , Electromagnetic Fields , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoporosis/therapy , Osteoporosis/prevention & control , Osteoporosis/blood , Osteoporosis/metabolism , Osteoporosis/pathology , Male , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/therapy , Bone Density/radiation effects , Bone Marrow/radiation effects , Bone Marrow/metabolism , Cellular Microenvironment , Aging
19.
Chem Rev ; 124(4): 1738-1861, 2024 02 28.
Article En | MEDLINE | ID: mdl-38354333

The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.


Fluorescent Dyes , Mechanical Phenomena , Animals , Humans , Fluorescent Dyes/chemistry , Cellular Microenvironment
20.
Clin Transl Med ; 14(1): e1535, 2024 01.
Article En | MEDLINE | ID: mdl-38264936

BACKGROUND: The understanding of the heterogeneous cellular microenvironment of colonic polyps in paediatric patients with solitary juvenile polyps (SJPs), polyposis syndrome (PJS) and Peutz-Jeghers syndrome (PJS) remains limited. METHODS: We conducted single-cell RNA sequencing and multiplexed immunohistochemistry (mIHC) analyses on both normal colonic tissue and different types of colonic polyps obtained from paediatric patients. RESULTS: We identified both shared and disease-specific cell subsets and expression patterns that played important roles in shaping the unique cellular microenvironments observed in each polyp subtype. As such, increased myeloid, endothelial and epithelial cells were the most prominent features of SJP, JPS and PJS polyps, respectively. Noticeably, memory B cells were increased, and a cluster of epithelial-mesenchymal transition (EMT)-like colonocytes existed across all polyp subtypes. Abundant neutrophil infiltration was observed in SJP polyps, while CX3CR1hi CD8+ T cells and regulatory T cells (Tregs) were predominant in SJP and JPS polyps, while GZMAhi natural killer T cells were predominant in PJS polyps. Compared with normal colonic tissues, myeloid cells exhibited specific induction of genes involved in chemotaxis and interferon-related pathways in SJP polyps, whereas fibroblasts in JPS polyps had upregulation of myofiber-associated genes and epithelial cells in PJS polyps exhibited induction of a series of nutrient absorption-related genes. In addition, the TNF-α response was uniformly upregulated in most cell subsets across all polyp subtypes, while endothelial cells and fibroblasts separately showed upregulated cell adhesion and EMT signalling in SJP and JPS polyps. Cell-cell interaction network analysis showed markedly enhanced intercellular communication, such as TNF, VEGF, CXCL and collagen signalling networks, among most cell subsets in polyps, especially SJP and JPS polyps. CONCLUSION: These findings strengthen our understanding of the heterogeneous cellular microenvironment of polyp subtypes and identify potential therapeutic approaches to reduce the recurrence of polyps in children.


Colonic Polyps , Humans , Child , CD8-Positive T-Lymphocytes , Endothelial Cells , Cellular Microenvironment , Cell Communication
...