Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 10: 225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873155

RESUMEN

Engagement of the B cell receptor (BCR) with surface-tethered antigens leads to the formation of an immune synapse (IS), where cell signaling and antigen uptake are tightly coordinated. Centrosome re-orientation to the immune synapse has emerged as a critical regulatory step to guide the local recruitment and secretion of lysosomes, which can facilitate the extraction of immobilized antigens. This process is coupled to actin remodeling at the centrosome and at the immune synapse, which is crucial to promote cell polarity. How B cells balance both pools of actin cytoskeleton to achieve a polarized phenotype during the formation of an immune synapse is not fully understood. Here, we reveal that B cells rely on proteasome activity to achieve this task. The proteasome is a multi-catalytic protease that degrades cytosolic and nuclear proteins and its dysfunction is associated with diseases, such as cancer and autoimmunity. Our results show that resting B cells contain an active proteasome pool at the centrosome, which is required for efficient actin clearance at this level. As a result of proteasome inhibition, activated B cells do not deplete actin at the centrosome and are unable to separate the centrosome from the nucleus and thus display impaired polarity. Consequently, lysosome recruitment to the immune synapse, antigen extraction and presentation are severely compromised in B cells with diminished proteasome activity. Additionally, we found that proteasome inhibition leads to impaired actin remodeling at the immune synapse, where B cells display defective spreading responses and distribution of key signaling molecules at the synaptic membrane. Overall, our results reveal a new role for the proteasome in regulating the immune synapse of B cells, where the intracellular compartmentalization of proteasome activity controls cytoskeleton remodeling between the centrosome and synapse, with functional repercussions in antigen extraction and presentation.


Asunto(s)
Actinas/metabolismo , Antígenos/metabolismo , Linfocitos B/fisiología , Sinapsis Inmunológicas/inmunología , Complejo de la Endopetidasa Proteasomal/fisiología , Animales , Polaridad Celular , Centrosoma/fisiología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos B/fisiología , Transducción de Señal/fisiología , Quinasa Syk/fisiología
2.
Cell Motil Cytoskeleton ; 51(2): 57-75, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11921164

RESUMEN

Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi beta-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking.


Asunto(s)
Centrosoma/fisiología , Melanosomas/fisiología , Microtúbulos/fisiología , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Antígenos de Neoplasias , Transporte Biológico/fisiología , Biomarcadores/análisis , Proteína Coatómero/análisis , Proteínas Fúngicas/análisis , Antígenos Específicos del Melanoma , Ratones , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas de Neoplasias/análisis , Tejido Nervioso/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transfección , Células Tumorales Cultivadas
3.
Dev Biol ; 222(2): 420-8, 2000 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10837129

RESUMEN

We reported previously that inhibition of MAP kinase during meiosis in Urechis caupo eggs caused premature sperm aster formation and we reviewed indirect evidence that the suppression of sperm asters by MAPK during meiosis might be a universal mechanism (M. C. Gould and J. L. Stephano, 1999, Dev. Biol. 216, 348-358). We tested this proposition with oyster (Crassostrea gigas) and starfish (Asterina miniata) eggs, utilizing the MEK inhibitors U0126 and PD98059. Centrosomes, asters, and meiotic spindles were visualized by normal epifluorescence and confocal microscopy following indirect immunocytochemical staining for anti-beta-tubulin. When MAPK activation was inhibited, sperm asters in both species developed prematurely and tended to move toward the egg centrosomes, sometimes even fusing with the egg spindle or centrosomes. Meiotic spindles and polar body formation were also abnormal when MAPK was inhibited.


Asunto(s)
Centrosoma/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/citología , Animales , Butadienos/farmacología , Centrosoma/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Meiosis/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Ostreidae , Interacciones Espermatozoide-Óvulo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Estrellas de Mar , Tubulina (Proteína)/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA