Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.326
1.
CNS Neurosci Ther ; 30(6): e14786, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828694

PURPOSE: To investigate dynamic functional connectivity (dFC) within the cerebellar-whole brain network and dynamic topological properties of the cerebellar network in obstructive sleep apnea (OSA) patients. METHODS: Sixty male patients and 60 male healthy controls were included. The sliding window method examined the fluctuations in cerebellum-whole brain dFC and connection strength in OSA. Furthermore, graph theory metrics evaluated the dynamic topological properties of the cerebellar network. Additionally, hidden Markov modeling validated the robustness of the dFC. The correlations between the abovementioned measures and clinical assessments were assessed. RESULTS: Two dynamic network states were characterized. State 2 exhibited a heightened frequency, longer fractional occupancy, and greater mean dwell time in OSA. The cerebellar networks and cerebrocerebellar dFC alterations were mainly located in the default mode network, frontoparietal network, somatomotor network, right cerebellar CrusI/II, and other networks. Global properties indicated aberrant cerebellar topology in OSA. Dynamic properties were correlated with clinical indicators primarily on emotion, cognition, and sleep. CONCLUSION: Abnormal dFC in male OSA may indicate an imbalance between the integration and segregation of brain networks, concurrent with global topological alterations. Abnormal default mode network interactions with high-order and low-level cognitive networks, disrupting their coordination, may impair the regulation of cognitive, emotional, and sleep functions in OSA.


Cerebellum , Nerve Net , Sleep Apnea, Obstructive , Humans , Male , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Middle Aged , Adult , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Magnetic Resonance Imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging
2.
Medicine (Baltimore) ; 103(21): e37605, 2024 May 24.
Article En | MEDLINE | ID: mdl-38788012

RATIONALE: Subacute combined degeneration of the spinal cord is a degenerative disease of the central and peripheral nervous systems caused by vitamin B12 deficiency, mainly involving the spinal cord posterior, lateral, and peripheral nerves, but rarely involving the cerebellum. PATIENT CONCERNS: A 41-year-old woman presented with a 2-year history of walking unsteadily. Her hematologic examination revealed megaloblastic anemia and vitamin B12 deficiency. Electromyography showed multiple peripheral nerve damage (sensory fibers and motor fibers were involved). Imaging examination showed long T2 signal in the cervical, thoracic and lumbar spinal cord and cerebellum. Gastroscopy revealed autoimmune gastritis. DIAGNOSES: Subacute combined degeneration of the spinal cord. INTERVENTIONS: By supplementing with vitamin B12. OUTCOMES: The patient's symptoms of limb weakness, diet, and consciousness were improved, and the muscle strength of both lower limbs recovered to grade IV. LESSONS: The symptomatic people should seek medical treatment in time to avoid further deterioration of the disease. When esophagogastroduodenoscopy is performed as part of routine physical examination in asymptomatic people, it should be checked for the presence of autoimmune gastritis. Early diagnosis can prevent irreversible neuropathy.


Subacute Combined Degeneration , Humans , Female , Adult , Subacute Combined Degeneration/etiology , Subacute Combined Degeneration/diagnosis , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/diagnosis , Gastritis/diagnosis , Vitamin B 12/therapeutic use , Vitamin B 12/administration & dosage , Cerebellum/pathology , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
3.
Hum Brain Mapp ; 45(8): e26717, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38798116

Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum ( h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.


Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/diagnostic imaging , Cerebellum/anatomy & histology , Male , Adolescent , Female , Young Adult , Child , Adult , Organ Size , Twins, Monozygotic
4.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38741271

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
5.
Commun Biol ; 7(1): 522, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702520

An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.


Cerebellum , Magnetic Resonance Imaging , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Male , Cerebellum/physiology , Cerebellum/diagnostic imaging , Female , Adult , Young Adult , Touch Perception/physiology , Touch/physiology
6.
Front Immunol ; 15: 1388667, 2024.
Article En | MEDLINE | ID: mdl-38799430

Cerebellar ataxia is an uncommon and atypical manifestation of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, often accompanied by seizures, psychiatric symptoms, and cognitive deficits. Previous cases of isolated brainstem-cerebellar symptoms in patients with anti-NMDAR encephalitis have not been documented. This report presents a case of anti-NMDAR encephalitis in which the patient exhibited cerebellar ataxia, nystagmus, diplopia, positive bilateral pathological signs, and hemiparesthesia with no other accompanying symptoms or signs. The presence of positive CSF anti-NMDAR antibodies further supports the diagnosis. Other autoantibodies were excluded through the use of cell-based assays. Immunotherapy was subsequently administered, leading to a gradual recovery of the patient.


Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Autoantibodies , Brain Stem , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain Stem/pathology , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Autoantibodies/blood , Female , Cerebellar Ataxia/etiology , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/immunology , Cerebellum/pathology , Cerebellum/diagnostic imaging , Receptors, N-Methyl-D-Aspartate/immunology , Adult , Immunotherapy , Male , Magnetic Resonance Imaging
8.
Clin Imaging ; 111: 110171, 2024 Jul.
Article En | MEDLINE | ID: mdl-38759601

The shrimp sign is characterized by a well-defined lesion in the deep cerebellar white matter, with hyperintense signal on T2- and hypointense signal on T1-weighted imaging, abutting and outlining the dentate nucleus, unilaterally or bilaterally. This sign has high sensitivity and specificity for cerebellar progressive multifocal leukoencephalopathy (PML) within the correct clinical scenario. In this article, we present a case of cerebellar PML in a woman living with human immunodeficiency virus, who was not using antiretroviral therapy, and presented the shrimp sign on brain MRI.


Leukoencephalopathy, Progressive Multifocal , Magnetic Resonance Imaging , Humans , Leukoencephalopathy, Progressive Multifocal/diagnostic imaging , Female , Magnetic Resonance Imaging/methods , Middle Aged , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebellar Diseases/diagnostic imaging , HIV Infections/complications
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38615243

OBJECTIVE: To investigate the alterations in cortical-cerebellar circuits and assess their diagnostic potential in preschool children with autism spectrum disorder using multimodal magnetic resonance imaging. METHODS: We utilized diffusion basis spectrum imaging approaches, namely DBSI_20 and DBSI_combine, alongside 3D structural imaging to examine 31 autism spectrum disorder diagnosed patients and 30 healthy controls. The participants' brains were segmented into 120 anatomical regions for this analysis, and a multimodal strategy was adopted to assess the brain networks using a multi-kernel support vector machine for classification. RESULTS: The results revealed consensus connections in the cortical-cerebellar and subcortical-cerebellar circuits, notably in the thalamus and basal ganglia. These connections were predominantly positive in the frontoparietal and subcortical pathways, whereas negative consensus connections were mainly observed in frontotemporal and subcortical pathways. Among the models tested, DBSI_20 showed the highest accuracy rate of 86.88%. In addition, further analysis indicated that combining the 3 models resulted in the most effective performance. CONCLUSION: The connectivity network analysis of the multimodal brain data identified significant abnormalities in the cortical-cerebellar circuits in autism spectrum disorder patients. The DBSI_20 model not only provided the highest accuracy but also demonstrated efficiency, suggesting its potential for clinical application in autism spectrum disorder diagnosis.


Autism Spectrum Disorder , Humans , Child, Preschool , Autism Spectrum Disorder/diagnostic imaging , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Brain
10.
Sci Rep ; 14(1): 8168, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589482

Injury, tumors, ischemia, and lesions in the cerebellum show the involvement of this region in human speech. The association of the cerebellum with learned birdsong has only been identified recently. Cerebellar dysfunction in young songbirds causes learning disabilities, but its role in adult songbirds has not been established. The aim of this study was to investigate the role of the deep cerebellar nuclei (DCN) in adult birdsong. We created bilateral excitotoxic lesions in the DCN of adult male zebra finches (Taeniopygia guttata) and recorded their songs for up to 4 months. Using magnetic resonance imaging (MRI) and immunohistochemistry, we validated the lesion efficacy. We found that the song duration significantly increased from 14 weeks post-op; the increase in duration was caused by a greater number of introductory notes as well as a greater number of syllables sung after the introductory notes. On the other hand, the motif duration decreased from 8 weeks after DCN lesions were induced, which was due to faster singing of syllables, not changes in inter-syllable interval length. DCN lesions also caused a decrease in the fundamental frequency of syllables. In summary, we showed that DCN lesions influence the temporal and acoustic features of birdsong. These results suggest that the cerebellum influences singing in adult songbirds.


Finches , Songbirds , Animals , Male , Cerebellum/diagnostic imaging , Communication , Learning , Vocalization, Animal
11.
Acta Neurochir (Wien) ; 166(1): 184, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639801

Herein, we report three cases of cerebellar hemorrhage due to a ruptured small aneurysm located on a collateral artery compensating for one or more stenotic or occluded major cerebellar arteries. In each case, endovascular distant parent artery occlusion of both the collateral artery and aneurysm was performed to prevent rebleeding. A ruptured small aneurysm in a collateral artery may be observed in patients with hemorrhage in an atypical cerebellar region, especially in cases of stenosis or occlusion of the vertebral artery or posterior inferior cerebellar artery. Thus, cerebral angiography is recommended to rule out collateral artery aneurysm.


Aneurysm, Ruptured , Arterial Occlusive Diseases , Embolization, Therapeutic , Intracranial Aneurysm , Humans , Vertebral Artery/diagnostic imaging , Vertebral Artery/surgery , Intracranial Aneurysm/complications , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Cerebral Angiography , Cerebral Hemorrhage , Cerebellum/diagnostic imaging , Cerebellum/blood supply , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/diagnostic imaging , Aneurysm, Ruptured/surgery
12.
Neuroradiology ; 66(6): 999-1012, 2024 Jun.
Article En | MEDLINE | ID: mdl-38671339

PURPOSE: Previous studies have demonstrated impaired cerebellar function in patients with obstructive sleep apnea (OSA), which is associated with impaired cognition. However, the effects of OSA on resting-state functional connectivity (FC) in the cerebellum has not been determined. The purpose of this study was to investigate resting-state FC of the cerebellar subregions and its relevance to clinical symptoms in patients with OSA. METHODS: Sixty-eight patients with OSA and seventy-two healthy controls (HCs) were included in the study. Eight subregions of the cerebellum were selected as regions of interest, and the FC values were calculated for each subregion with other voxels. A correlation analysis was performed to examine the relationship between clinical and cognitive data. RESULTS: Patients with OSA showed higher FC in specific regions, including the right lobule VI with the right posterior middle temporal gyrus and right angular gyrus, the right Crus I with the bilateral precuneus/left superior parietal lobule, and the right Crus II with the precuneus/right posterior cingulate cortex. Furthermore, the oxygen depletion index was negatively correlated with aberrant FC between the right Crus II and the bilateral precuneus / right posterior cingulate cortex in OSA patients (p = 0.004). CONCLUSION: The cerebellum is functionally lateralized and closely linked to the posterior default mode network. Higher FC is related to cognition, emotion, language, and sleep in OSA. Abnormal FC may offer new neuroimaging evidence and insights for a deeper comprehension of OSA-related alterations.


Cerebellum , Magnetic Resonance Imaging , Sleep Apnea, Obstructive , Humans , Male , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Middle Aged , Adult , Case-Control Studies , Brain Mapping/methods , Rest
13.
BMC Neurol ; 24(1): 145, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684956

BACKGROUND: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. METHODS: Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. DISCUSSION: Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT06122675, first registered November 7, 2023.


Cerebellum , Cerebral Palsy , Deep Brain Stimulation , Movement Disorders , Humans , Cerebral Palsy/therapy , Cerebral Palsy/physiopathology , Deep Brain Stimulation/methods , Child , Adolescent , Young Adult , Movement Disorders/therapy , Cerebellum/diagnostic imaging , Male , Female , Adult
14.
Schizophr Res ; 267: 497-506, 2024 May.
Article En | MEDLINE | ID: mdl-38582653

BACKGROUND: Abnormal cerebellar functional connectivity (FC) has been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). However, the patterns of cerebellar dysconnectivity in these two disorders and their association with cognitive functioning and clinical symptoms have not been fully clarified. In this study, we examined cerebellar FC alterations in SCZ and BD-I and their association with cognition and psychotic symptoms. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data of 39 SCZ, 43 BD-I, and 61 healthy controls from the Consortium for Neuropsychiatric Phenomics dataset were examined. The cerebellum was parcellated into ten functional networks, and seed-based FC was calculated for each cerebellar system. Principal component analyses were used to reduce the dimensionality of the diagnosis-related FC and cognitive variables. Multiple regression analyses were used to assess the relationship between FC and cognitive and clinical data. RESULTS: We observed decreased cerebellar FC with the frontal, temporal, occipital, and thalamic areas in individuals with SCZ, and a more widespread decrease in cerebellar FC in individuals with BD-I, involving the frontal, cingulate, parietal, temporal, occipital, and thalamic regions. SCZ had increased within-cerebellum and cerebellar frontal FC compared to BD-I. In BD-I, memory and verbal learning performances, which were higher compared to SCZ, showed a greater interaction with cerebellar FC patterns. Additionally, patterns of increased cortico-cerebellar FC were marginally associated with positive symptoms in patients. CONCLUSIONS: Our findings suggest that shared and distinct patterns of cortico-cerebellar dysconnectivity in SCZ and BD-I could underlie cognitive impairments and psychotic symptoms in these disorders.


Bipolar Disorder , Cerebellum , Magnetic Resonance Imaging , Schizophrenia , Humans , Bipolar Disorder/physiopathology , Bipolar Disorder/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Male , Female , Adult , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Young Adult , Connectome , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Middle Aged
15.
Brain Cogn ; 177: 106160, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670051

While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6-14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.


Cerebellum , Learning , Magnetic Resonance Imaging , Motor Skills Disorders , Reaction Time , Humans , Child , Male , Female , Adolescent , Motor Skills Disorders/physiopathology , Motor Skills Disorders/diagnostic imaging , Reaction Time/physiology , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Learning/physiology , Magnetic Resonance Imaging/methods , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Neuroimaging/methods , Attention/physiology , Basal Ganglia/physiopathology , Basal Ganglia/diagnostic imaging , Psychomotor Performance/physiology , Motor Skills/physiology
16.
Medicine (Baltimore) ; 103(17): e37923, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669361

RATIONALE: Primary central nervous system lymphoma (PCNSL) is a rare, highly malignant form of non-Hodgkin lymphoma categorized under the diffuse large B-cell type. It accounts for merely 1% of all non-Hodgkin lymphoma cases and comprises approximately 3% of all brain tumors. The involvement of the cerebellum is observed in only 9% of these cases. Recently, we came across an unusual instance: a young man presenting with multiple lesions located specifically within the cerebellum. PATIENT CONCERNS: A 26-year-old male was admitted to the hospital due to severe headaches. He has a medical history of sporadic headaches, accompanied by dizziness, nausea, and vomiting persisting for a month. Over the last 10 days, his headaches have intensified, coupled with decreased vision and protrusion of the eyeballs. Magnetic resonance imaging (MRI) revealed abnormal signals in both cerebellar hemispheres. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: Diagnostic procedures included cerebellar biopsy, posterior fossa decompression, and lateral ventricle drainage. Histopathological examination identified diffuse large B-cell lymphoma (DLBCL) with high proliferative activity. To minimize neurotoxicity, chemotherapy involved intrathecal methotrexate (MTX) injections combined with the CHOP program. The patient has shown good tolerance to the treatment so far. LESSONS: While the definitive optimal treatment approach remains elusive, current chemotherapy centered on high-dose MTX stands as the standard induction therapy. Integrating surgery with radiotherapy and chemotherapy significantly extends patient survival.


Antineoplastic Combined Chemotherapy Protocols , Cerebellar Neoplasms , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Adult , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cerebellar Neoplasms/therapy , Cerebellar Neoplasms/pathology , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Vincristine/therapeutic use , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Methotrexate/therapeutic use , Methotrexate/administration & dosage , Prednisone/therapeutic use , Prednisone/administration & dosage , Combined Modality Therapy , Magnetic Resonance Imaging , Cerebellum/pathology , Cerebellum/diagnostic imaging
17.
Medicine (Baltimore) ; 103(17): e37987, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669389

RATIONALE: Joubert syndrome (JS) is a rare genetic disorder that presents with various neurological symptoms, primarily involving central nervous system dysfunction. Considering the etiology of JS, peripheral nervous system abnormalities cannot be excluded; however, cases of JS accompanied by peripheral nervous system abnormalities have not yet been reported. Distinct radiological findings on brain magnetic resonance imaging were considered essential for the diagnosis of JS. However, recently, cases of JS with normal or nearly normal brain morphology have been reported. To date, there is no consensus on the most appropriate diagnostic method for JS when imaging-based diagnostic approach is challenging. This report describes the case of an adult patient who exhibited bilateral peroneal neuropathies and was finally diagnosed with JS through genetic testing. PATIENT CONCERNS AND DIAGNOSIS: A 27-year-old man visited our outpatient clinic due to a gait disturbance that started at a very young age. The patient exhibited difficulty maintaining balance, especially when walking slowly. Oculomotor apraxia was observed on ophthalmic evaluation. During diagnostic workups, including brain imaging and direct DNA sequencing, no conclusive findings were detected. Only nerve conduction studies revealed profound bilateral peroneal neuropathies. We performed whole genome sequencing to obtain a proper diagnosis and identify the gene mutation responsible for JS. LESSONS: This case represents the first instance of peripheral nerve dysfunction in JS. Further research is needed to explore the association between JS and peripheral nervous system abnormalities. Detailed genetic testing may serve as a valuable tool for diagnosing JS when no prominent abnormalities are detected in brain imaging studies.


Abnormalities, Multiple , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Kidney Diseases, Cystic , Peroneal Neuropathies , Retina , Retina/abnormalities , Humans , Male , Adult , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/complications , Cerebellum/diagnostic imaging , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Peroneal Neuropathies/diagnosis , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Retina/diagnostic imaging , Magnetic Resonance Imaging
18.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658164

Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.


Cerebellum , Pain , Humans , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Animals , Pain/physiopathology , Pain/psychology , Emotions/physiology
19.
Parkinsonism Relat Disord ; 123: 106975, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677216

INTRODUCTION: Multiple system atrophy (MSA) is clinically characterized by various neurological symptoms. According to the diagnostic criteria, MSA is classified into parkinsonian-dominant type (MSA-P) or cerebellar ataxia-dominant type (MSA-C) based on the predominant signs displayed. Recently, N-isopropyl-p-[123I] iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT), a radiological examination evaluating brain perfusion, has been successful in detecting cerebellar hypoperfusion in MSA-P patients, demonstrating its utility in the early detection of cerebellar dysfunction. In this study, we further explored whether this cerebellar hypoperfusion impacts the clinical features of MSA-P, whether it is observable in patients without cerebellar symptoms, and, most importantly, whether it influences the prognosis of MSA-P. METHODS: We conducted a retrospective analysis of 88 MSA patients who were admitted to our department for the last fifteen years. Clinical data were collected, and cerebellar perfusion was examined using 123I-IMP SPECT. This analysis includes the application of the three-dimensional stereotactic surface projection (3D-SSP) technique and Z-score. RESULTS: Cerebellar perfusion decreased in MSA-P patients without cerebellar ataxia, compared to healthy individuals (p = 0.0017). The Receiver Operating Characteristic (ROC) curve demonstrated a moderate ability to distinguish MSA-P patients without cerebellar ataxia (MSA-Pp) from healthy controls (AUC = 0.6832). Among MSA-Pp, those exhibiting cerebellar hypoperfusion showed relatively improved neurological prognosis, although the difference was not statistically significant when compared to those with normal cerebellar perfusion. CONCLUSION: Assessing cerebellar perfusion through IMP-SPECT proves valuable in detecting subclinical cerebellar dysfunction in MSA-Pp. Importantly, cerebellar hypoperfusion does not correlate with a poorer neurological prognosis.


Cerebellum , Multiple System Atrophy , Tomography, Emission-Computed, Single-Photon , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/diagnosis , Multiple System Atrophy/physiopathology , Male , Female , Middle Aged , Aged , Prognosis , Retrospective Studies , Cerebellum/blood supply , Cerebellum/diagnostic imaging , Cerebrovascular Circulation/physiology
...