Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.201
1.
Commun Biol ; 7(1): 522, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702520

An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.


Cerebellum , Magnetic Resonance Imaging , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Male , Cerebellum/physiology , Cerebellum/diagnostic imaging , Female , Adult , Young Adult , Touch Perception/physiology , Touch/physiology
2.
Exp Brain Res ; 242(6): 1517-1531, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722346

Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.


Learning , Motor Skills , Stroke Rehabilitation , Stroke , Adult , Aged , Female , Humans , Male , Middle Aged , Cerebellar Diseases/physiopathology , Cerebellar Diseases/rehabilitation , Cerebellum/physiopathology , Cerebellum/physiology , Chronic Disease , Learning/physiology , Motor Skills/physiology , Psychomotor Performance/physiology , Robotics , Stroke/physiopathology , Stroke Rehabilitation/methods , Prospective Studies , Adolescent , Aged, 80 and over
3.
Nat Commun ; 15(1): 4003, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734715

Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.


Macaca mulatta , Purkinje Cells , Animals , Purkinje Cells/physiology , Male , Head Movements/physiology , Cerebellum/physiology , Cerebellum/cytology , Vestibule, Labyrinth/physiology , Motion Perception/physiology
4.
Sci Rep ; 14(1): 11847, 2024 05 24.
Article En | MEDLINE | ID: mdl-38782921

Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.


Cerebellum , Evoked Potentials , Executive Function , Prefrontal Cortex , Transcranial Magnetic Stimulation , Humans , Male , Transcranial Magnetic Stimulation/methods , Female , Adult , Cerebellum/physiology , Executive Function/physiology , Prefrontal Cortex/physiology , Evoked Potentials/physiology , Young Adult , Healthy Volunteers , Cross-Over Studies , Theta Rhythm/physiology , Cognition/physiology , Dorsolateral Prefrontal Cortex/physiology
5.
Curr Biol ; 34(9): R340-R343, 2024 05 06.
Article En | MEDLINE | ID: mdl-38714159

The posterior cerebellum is emerging as a key structure for social cognition. A new study causally demonstrates its early involvement during emotion perception and functional connectivity with the posterior superior temporal sulcus, a cortical hub of the social brain.


Cerebellum , Social Perception , Humans , Cerebellum/physiology , Emotions/physiology , Social Cognition , Temporal Lobe/physiology
6.
Nat Neurosci ; 27(5): 940-951, 2024 May.
Article En | MEDLINE | ID: mdl-38565684

Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.


Association Learning , Optogenetics , Purkinje Cells , Animals , Purkinje Cells/physiology , Mice , Association Learning/physiology , Conditioning, Eyelid/physiology , Male , Mice, Inbred C57BL , Cerebellum/physiology , Cerebellum/cytology , Nerve Fibers/physiology , Mice, Transgenic , Cerebellar Cortex/physiology , Female
7.
Elife ; 132024 Apr 17.
Article En | MEDLINE | ID: mdl-38629828

The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.


Brain , Cerebellum , Mice , Animals , Cerebellum/physiology , Nystagmus, Optokinetic , Neurons , Learning , Photic Stimulation/methods
8.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630337

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Secondary Metabolism
9.
J Neurosci ; 44(19)2024 May 08.
Article En | MEDLINE | ID: mdl-38589230

Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e., corollary discharges), which are compared with reafference in the cerebellum to compute predictive or internal models of movement. Internal models emerge gradually over the first three postnatal weeks in rats through a process that is not yet fully understood. Previously, we demonstrated in postnatal day (P) 8 and P12 rats that precerebellar nuclei convey corollary discharge and reafference to the cerebellum during active (REM) sleep when pups produce limb twitches. Here, recording from a deep cerebellar nucleus (interpositus, IP) in P12 rats of both sexes, we compared reafferent and exafferent responses with twitches and limb stimulations, respectively. As expected, most IP units showed robust responses to twitches. However, in contrast with other sensory structures throughout the brain, relatively few IP units showed exafferent responses. Upon finding that exafferent responses occurred in pups under urethane anesthesia, we hypothesized that urethane inhibits cerebellar cortical cells, thereby disinhibiting exafferent responses in IP. In support of this hypothesis, ablating cortical tissue dorsal to IP mimicked the effects of urethane on exafference. Finally, the results suggest that twitch-related corollary discharge and reafference are conveyed simultaneously and in parallel to cerebellar cortex and IP. Based on these results, we propose that twitches provide opportunities for the nascent cerebellum to integrate somatotopically organized corollary discharge and reafference, thereby enabling the development of closed-loop circuits and, subsequently, internal models.


Cerebellum , Movement , Animals , Rats , Female , Male , Movement/physiology , Cerebellum/physiology , Animals, Newborn , Cerebellar Nuclei/physiology , Rats, Sprague-Dawley , Rats, Long-Evans , Action Potentials/physiology
10.
Neurobiol Learn Mem ; 211: 107925, 2024 May.
Article En | MEDLINE | ID: mdl-38579895

Our previous studies found that the central amygdala (CeA) modulates cerebellum-dependent eyeblink conditioning (EBC) using muscimol inactivation. We also found that CeA inactivation decreases cerebellar neuronal activity during the conditional stimulus (CS) from the start of training. Based on these findings, we hypothesized that the CeA facilitates CS input to the cerebellum. The current study tested the CS facilitation hypothesis using optogenetic inhibition with archaerhodopsin (Arch) and excitation with channelrhodopsin (ChR2) of the CeA during EBC in male rats. Optogenetic manipulations were administered during the 400 ms tone CS or during a 400 ms pre-CS period. As predicted by the CS facilitation hypothesis CeA inhibition during the CS impaired EBC and CeA excitation during the CS facilitated EBC. Unexpectedly, CeA inhibition just prior to the CS also impaired EBC, while CeA excitation during the pre-CS pathway did not facilitate EBC. The results suggest that the CeA contributes to CS facilitation and vigilance during the pre-CS period. These putative functions of the CeA may be mediated through separate output pathways from the CeA to the cerebellum.


Central Amygdaloid Nucleus , Cerebellum , Conditioning, Eyelid , Optogenetics , Animals , Male , Cerebellum/physiology , Cerebellum/drug effects , Central Amygdaloid Nucleus/physiology , Central Amygdaloid Nucleus/drug effects , Conditioning, Eyelid/physiology , Conditioning, Eyelid/drug effects , Rats , Rats, Long-Evans , Conditioning, Classical/physiology , Conditioning, Classical/drug effects
11.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38641414

Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several brain regions with two important areas being the motor cortex (M1) and the cerebellum (CB). However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded an activity from the M1 and cerebellar cortex in eight rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and CB spindles, and this spiking occurred at a preferred phase of the spindle. On average, M1 and CB neurons showed most spiking at the M1 or CB spindle peaks. These neurons also developed a preferential phase locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase locking was not significant for cerebellar neurons when compared with CB spindles. Additionally, we found that the percentage of task-modulated cells in the M1 and CB that fired with nonuniform spike phase distribution during M1/CB spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle band LFP coherence (for M1 and CB LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and CB recruit neurons that participate in the awake task to support motor memory consolidation.


Action Potentials , Motor Cortex , Neurons , Sleep , Animals , Motor Cortex/physiology , Male , Neurons/physiology , Sleep/physiology , Rats , Action Potentials/physiology , Cerebellum/physiology , Learning/physiology , Motor Skills/physiology , Rats, Sprague-Dawley , Rats, Long-Evans , Cerebellar Cortex/physiology
12.
Proc Natl Acad Sci U S A ; 121(17): e2318849121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38630714

Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target. At the end of the movement if the subject experienced an error but chose to withhold the corrective movement, only the first group received information about the sensory prediction error. We organized the P-cells based on the information content of their olivary input and found that in the group that received sensory information, the simple spikes were suppressed during fixation, then produced a burst before saccade onset in a direction consistent with assisting the movement. In the second group, the simple spikes were not suppressed during fixation but burst near saccade deceleration in a direction consistent with stopping the movement. Thus, the olive differentiated the P-cells based on whether they would receive sensory or motor information, and this defined their contributions to control of movements as well as holding still.


Cerebellum , Purkinje Cells , Cerebellum/physiology , Purkinje Cells/physiology , Neurons/physiology , Saccades , Movement
13.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38575352

The cerebellum has the reputation of being a primitive part of the brain that mostly is involved in motor coordination and motor control. Older lesion studies and more recent electrophysiological studies have, however, indicated that it is involved in temporal perception and temporal expectation building. An outstanding question is whether this temporal expectation building cerebellar activity has functional relevance. In this study, we collected magnetoencephalographic data from 30 healthy participants performing a detection task on at-threshold stimulation that was presented at the end of a sequence of temporally regular or irregular above-threshold stimulation. We found that behavioral detection rates depended on the degree of irregularity in the sequence preceding it. We also found cerebellar responses evoked by above-threshold and at-threshold stimulation. The evoked responses to at-threshold stimulation differed significantly, depending on whether it was preceded by a regular or an irregular sequence. Finally, we found that detection performance across participants correlated significantly with the differences in cerebellar evoked responses to the at-threshold stimulation, demonstrating the functional relevance of cerebellar activity in sensory expectation building. We furthermore found evidence of thalamic involvement, as indicated by responses in the beta band (14-30 Hz) and by significant modulations of cerebello-thalamic connectivity by the regularity of the sequence and the kind of stimulation terminating the sequence. These results provide evidence that the temporal expectation building mechanism of the cerebellum, what we and others have called an internal clock, shows functional relevance by regulating behavior and performance in sensory action that requires acting and integrating evidence over precise timescales.


Cerebellum , Magnetoencephalography , Time Perception , Humans , Male , Cerebellum/physiology , Female , Adult , Young Adult , Time Perception/physiology , Thalamus/physiology , Sensory Thresholds/physiology , Neural Pathways/physiology
14.
Curr Biol ; 34(9): 1844-1852.e3, 2024 05 06.
Article En | MEDLINE | ID: mdl-38565141

The posterior cerebellum is a recently discovered hub of the affective and social brain, with different subsectors contributing to different social functions. However, very little is known about when the posterior cerebellum plays a critical role in social processing. Due to its location and anatomy, it has been difficult to use traditional approaches to directly study the chronometry of the cerebellum. To address this gap in cerebellar knowledge, here we investigated the causal contribution of the posterior cerebellum to social processing using a chronometric transcranial magnetic stimulation (TMS) approach. We show that the posterior cerebellum is recruited at an early stage of emotional processing (starting from 100 ms after stimulus onset), simultaneously with the posterior superior temporal sulcus (pSTS), a key node of the social brain. Moreover, using a condition-and-perturb TMS approach, we found that the recruitment of the pSTS in emotional processing is dependent on cerebellar activation. Our results are the first to shed light on chronometric aspects of cerebellar function and its causal functional connectivity with other nodes of the social brain.


Cerebellum , Emotions , Transcranial Magnetic Stimulation , Humans , Cerebellum/physiology , Emotions/physiology , Male , Female , Adult , Young Adult , Temporal Lobe/physiology
15.
PLoS Comput Biol ; 20(4): e1011277, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574161

According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.


Cerebellum , Computer Simulation , Conditioning, Eyelid , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Animals , Cerebellum/physiology , Conditioning, Eyelid/physiology , Purkinje Cells/physiology , Blinking/physiology , Conditioning, Classical/physiology , Synapses/physiology , Computational Biology , Mice , Cerebellar Cortex/physiology
16.
Soc Cogn Affect Neurosci ; 19(1)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38537123

The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming or also in using internal models for the prediction of forthcoming actions is still unclear. We used cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of healthy adults in using previously learned expectations in an action prediction task. In a first learning phase of this task, participants were exposed to different levels of associations between specific actions and contextual elements, to induce the formation of either strongly or moderately informative expectations. In a following testing phase, which assessed the use of these expectations for predicting ambiguous (i.e. temporally occluded) actions, we delivered ctDCS. Results showed that anodic, compared to sham, ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. Since ctDCS was delivered during the testing phase, that is after expectations were established, our findings suggest that the cerebellum is causally involved in using internal models (and not just in generating them). This encourages the exploration of the clinical effects of ctDCS to compensate poor use of predictive internal models for social perception.


Transcranial Direct Current Stimulation , Adult , Humans , Transcranial Direct Current Stimulation/methods , Cerebellum/physiology , Learning
17.
Soc Cogn Affect Neurosci ; 19(1)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38536051

Social norms are pivotal in guiding social interactions. The current study investigated the potential contribution of the posterior cerebellum, a critical region involved in perceiving and comprehending the sequential dynamics of social actions, in detecting actions that either conform to or deviate from social norms. Participants engaged in a goal-directed task in which they observed others navigating towards a goal. The trajectories demonstrated either norm-violating (trespassing forbidden zones) or norm-following behaviors (avoiding forbidden zones). Results revealed that observing social norm-violating behaviors engaged the bilateral posterior cerebellar Crus 2 and the right temporoparietal junction (TPJ) from the mentalizing network, and the parahippocampal gyrus (PHG) to a greater extent than observing norm-following behaviors. These mentalizing regions were also activated when comparing social sequences against non-social and non-sequential control conditions. Reproducing norm-violating social trajectories observed earlier, activated the left cerebellar Crus 2 and the right PHG compared to reproducing norm-following trajectories. These findings illuminate the neural mechanisms in the cerebellum associated with detecting norm transgressions during social navigation, emphasizing the role of the posterior cerebellum in detecting and signaling deviations from anticipated sequences.


Brain Mapping , Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/physiology , Cerebellum/diagnostic imaging , Male , Female , Young Adult , Adult , Magnetic Resonance Imaging/methods , Social Norms , Social Perception , Social Behavior , Mentalization/physiology
18.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38527808

Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.


Cerebellum , Neuronal Plasticity , Reflex, Vestibulo-Ocular , Animals , Reflex, Vestibulo-Ocular/physiology , Neuronal Plasticity/physiology , Mice , Cerebellum/growth & development , Cerebellum/physiology , Male , Female , Purkinje Cells/physiology , Adaptation, Physiological/physiology , Mice, Inbred C57BL , Mice, Knockout
19.
Nat Commun ; 15(1): 2119, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38459003

The basal ganglia and the cerebellum are major subcortical structures in the motor system. The basal ganglia have been cast as the reward center of the motor system, whereas the cerebellum is thought to be involved in adjusting sensorimotor parameters. Recent findings of reward signals in the cerebellum have challenged this dichotomous view. To compare the basal ganglia and the cerebellum directly, we recorded from oculomotor regions in both structures from the same monkeys. We partitioned the trial-by-trial variability of the neurons into reward and eye-movement signals to compare the coding across structures. Reward expectation and movement signals were the most pronounced in the output structure of the basal ganglia, intermediate in the cerebellum, and the smallest in the input structure of the basal ganglia. These findings suggest that reward and movement information is sharpened through the basal ganglia, resulting in a higher signal-to-noise ratio than in the cerebellum.


Basal Ganglia , Cerebellum , Basal Ganglia/physiology , Cerebellum/physiology , Movement , Neurons/physiology , Reward
20.
Sci Rep ; 14(1): 5622, 2024 03 07.
Article En | MEDLINE | ID: mdl-38453991

The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.


Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/physiology , Magnetic Resonance Imaging/methods , Language , Cognition/physiology , Attention
...