Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.768
1.
Fluids Barriers CNS ; 21(1): 47, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816737

BACKGROUND: Bidirectional reciprocal motion of cerebrospinal fluid (CSF) was quantified using four-dimensional (4D) flow magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) MRI. To estimate various CSF motions in the entire intracranial region, we attempted to integrate the flow parameters calculated using the two MRI sequences. To elucidate how CSF dynamics deteriorate in Hakim's disease, an age-dependent chronic hydrocephalus, flow parameters were estimated from the two MRI sequences to assess CSF motion in the entire intracranial region. METHODS: This study included 127 healthy volunteers aged ≥ 20 years and 44 patients with Hakim's disease. On 4D flow MRI for measuring CSF motion, velocity encoding was set at 5 cm/s. For the IVIM MRI analysis, the diffusion-weighted sequence was set at six b-values (i.e., 0, 50, 100, 250, 500, and 1000 s/mm2), and the biexponential IVIM fitting method was adapted. The relationships between the fraction of incoherent perfusion (f) on IVIM MRI and 4D flow MRI parameters including velocity amplitude (VA), absolute maximum velocity, stroke volume, net flow volume, and reverse flow rate were comprehensively evaluated in seven locations in the ventricles and subarachnoid spaces. Furthermore, we developed a new parameter for fluid oscillation, the Fluid Oscillation Index (FOI), by integrating these two measurements. In addition, we investigated the relationship between the measurements and indices specific to Hakim's disease and the FOIs in the entire intracranial space. RESULTS: The VA on 4D flow MRI was significantly associated with the mean f-values on IVIM MRI. Therefore, we estimated VA that could not be directly measured on 4D flow MRI from the mean f-values on IVIM MRI in the intracranial CSF space, using the following formula; e0.2(f-85) + 0.25. To quantify fluid oscillation using one integrated parameter with weighting, FOI was calculated as VA × 10 + f × 0.02. In addition, the FOIs at the left foramen of Luschka had the strongest correlations with the Evans index (Pearson's correlation coefficient: 0.78). The other indices related with Hakim's disease were significantly associated with the FOIs at the cerebral aqueduct and bilateral foramina of Luschka. FOI at the cerebral aqueduct was also elevated in healthy controls aged ≥ 60 years. CONCLUSIONS: We estimated pulsatile CSF movements in the entire intracranial CSF space in healthy individuals and patients with Hakim's disease using FOI integrating VA from 4D flow MRI and f-values from IVIM MRI. FOI is useful for quantifying the CSF oscillation.


Cerebrospinal Fluid , Magnetic Resonance Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Adult , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Aged , Hydrodynamics , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Hydrocephalus/cerebrospinal fluid , Brain/diagnostic imaging , Brain/physiology
2.
Fluids Barriers CNS ; 21(1): 40, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725029

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS: Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS: Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS: Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.


Cerebrospinal Fluid , Diffusion Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Motion
3.
J Neurosurg ; 140(4): 1117-1128, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38564811

OBJECTIVE: Standard MRI protocols lack a quantitative sequence that can be used to evaluate shunt-treated patients with a history of hydrocephalus. The objective of this study was to investigate the use of phase-contrast MRI (PC-MRI), a quantitative MR sequence, to measure CSF flow through the shunt and demonstrate PC-MRI as a useful adjunct in the clinical monitoring of shunt-treated patients. METHODS: The rapid (96 seconds) PC-MRI sequence was calibrated using a flow phantom with known flow rates ranging from 0 to 24 mL/hr. Following phantom calibration, 21 patients were scanned with the PC-MRI sequence. Multiple, successive proximal and distal measurements were gathered in 5 patients to test for measurement error in different portions of the shunt system and to determine intrapatient CSF flow variability. The study also includes the first in vivo validations of PC-MRI for CSF shunt flow by comparing phase-contrast-measured flow rate with CSF accumulation in a collection burette obtained in patients with externalized distal shunts. RESULTS: The PC-MRI sequence successfully measured CSF flow rates ranging from 6 to 54 mL/hr in 21 consecutive pediatric patients. Comparison of PC-MRI flow measurement and CSF volume collected in a bedside burette showed good agreement in a patient with an externalized distal shunt. Notably, the distal portion of the shunt demonstrated lower measurement error when compared with PC-MRI measurements acquired in the proximal catheter. CONCLUSIONS: The PC-MRI sequence provided accurate and reliable clinical measurements of CSF flow in shunt-treated patients. This work provides the necessary framework to include PC-MRI as an immediate addition to the clinical setting in the noninvasive evaluation of shunt function and in future clinical investigations of CSF physiology.


Cerebrospinal Fluid Shunts , Hydrocephalus , Humans , Child , Hydrocephalus/diagnostic imaging , Hydrocephalus/surgery , Magnetic Resonance Imaging/methods , Neurosurgical Procedures , Prostheses and Implants , Cerebrospinal Fluid/physiology
4.
J Vet Intern Med ; 38(3): 1608-1617, 2024.
Article En | MEDLINE | ID: mdl-38664973

BACKGROUND: Changes in the brain can affect the flow velocity of cerebrospinal fluid (CSF). In humans, the flow velocity of CSF is not only altered by disease but also by age and sex. Such influences are not known in dogs. HYPOTHESIS: Peak flow velocity of CSF in dogs is associated with body weight, age, and sex. ANIMALS: Peak flow velocity of CSF was measured in 32 client-owned dogs of different breeds, age, and sex. METHODS: Peak flow velocity of CSF was determined by phase-contrast magnetic resonance imaging (PC-MRI) at the mesencephalic aqueduct, foramen magnum (FM), and second cervical vertebral body (C2). Dogs were grouped according to body weight, age, and sex. Flow velocity of CSF was compared between groups using linear regression models. RESULTS: Dogs with body weight >20 kg had higher CSF peak velocity compared with dogs <10 kg within the ventral and dorsal subarachnoid space (SAS) at the FM (P = .02 and P = .01, respectively), as well as in the ventral and dorsal SAS at C2 (P = .005 and P = .005, respectively). Dogs ≤2 years of age had significantly higher CSF peak flow velocity at the ventral SAS of the FM (P = .05). Females had significantly lower CSF peak flow velocity within the ventral SAS of FM (P = .04). CONCLUSION: Body weight, age, and sex influence CSF peak flow velocity in dogs. These factors need to be considered in dogs when CSF flow is quantitatively assessed.


Body Weight , Cerebrospinal Fluid , Animals , Dogs , Male , Female , Cerebrospinal Fluid/physiology , Age Factors , Sex Factors , Magnetic Resonance Imaging/veterinary
5.
J Neurosci ; 44(22)2024 May 29.
Article En | MEDLINE | ID: mdl-38684364

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Solute Carrier Family 12, Member 2 , Spinal Cord , Symporters , Animals , Mice , Spinal Cord/metabolism , Female , Male , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , K Cl- Cotransporters , Signal Transduction/physiology , Neurons/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/physiology , Mice, Inbred C57BL , Receptors, GABA-A/metabolism , Chlorides/metabolism , Chlorides/cerebrospinal fluid , Chlorides/pharmacology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology
6.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38454518

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Cerebral Ventricles , Magnetic Resonance Imaging , Humans , Cerebral Ventricles/physiology , Cerebral Aqueduct/diagnostic imaging , Cerebral Aqueduct/physiology , Respiration , Pressure , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
8.
Magn Reson Med ; 92(2): 807-819, 2024 Aug.
Article En | MEDLINE | ID: mdl-38469904

PURPOSE: To develop and validate a noninvasive imaging technique for accurately assessing very slow CSF flow within shunt tubes in pediatric patients with hydrocephalus, aiming to identify obstructions that might impede CSF drainage. THEORY AND METHODS: A simulation of shunt flow enhancement of signal intensity (shunt-FENSI) signal is used to establish the relationship between signal change and flow rate. The quantification of flow enhancement of signal intensity data involves normalization, curve fitting, and calibration to match simulated data. Additionally, a phase sweep method is introduced to accommodate the impact of magnetic field inhomogeneity on the flow measurement. The method is tested in flow phantoms, healthy adults, intensive care unit patients with external ventricular drains (EVD), and shunt patients. EVDs enable shunt-flow measurements to be acquired with a ground truth measure of CSF drainage. RESULTS: The flow-rate-to-signal simulation establishes signal-flow relationships and takes into account the T1 of draining fluid. The phase sweep method accurately accounts for phase accumulation due to frequency offsets at the shunt. Results in phantom and healthy human participants reveal reliable quantification of flow rates using controlled flows and agreement with the flow simulation. EVD patients display reliable measures of flow rates. Shunt patient results demonstrate feasibility of the method and consistent flow rates for functional shunts. CONCLUSION: The results demonstrate the technique's applicability, accuracy, and potential for diagnosing and noninvasively monitoring hydrocephalus. Limitations of the current approach include a high sensitivity to motion and strict requirement of imaging slice prescription.


Cerebrospinal Fluid Shunts , Hydrocephalus , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Magnetic Resonance Imaging/methods , Adult , Male , Female , Reproducibility of Results , Computer Simulation , Child , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Algorithms , Image Processing, Computer-Assisted/methods
9.
Fluids Barriers CNS ; 21(1): 20, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38419077

BACKGROUND: Impaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia. The smallness and intricate architecture of the optic nerve subarachnoid space (ONSAS) hamper accurate measurements of CSF dynamics in this space, and effects of geometrical changes due to pathophysiological processes remain unclear. The aim of this study is to investigate CSF dynamics and its response to structural alterations of the ONSAS, from first principles, with supercomputers. METHODS: Large-scale in-silico investigations were performed by means of computational fluid dynamics (CFD) analysis. High-order direct numerical simulations (DNS) have been carried out on ONSAS geometry at a resolution of 1.625 µm/pixel. Morphological changes on the ONSAS microstructure have been examined in relation to CSF pressure gradient (CSFPG) and wall strain rate, a quantitative proxy for mass transfer of solutes. RESULTS: A physiological flow speed of 0.5 mm/s is achieved by imposing a hydrostatic pressure gradient of 0.37-0.67 Pa/mm across the ONSAS structure. At constant volumetric rate, the relationship between pressure gradient and CSF-accessible volume is well captured by an exponential curve. The ONSAS microstructure exhibits superior mass transfer compared to other geometrical shapes considered. An ONSAS featuring no microstructure displays a threefold smaller surface area, and a 17-fold decrease in mass transfer rate. Moreover, ONSAS trabeculae seem key players in mass transfer. CONCLUSIONS: The present analysis suggests that a pressure drop of 0.1-0.2 mmHg over 4 cm is sufficient to steadily drive CSF through the entire subarachnoid space. Despite low hydraulic resistance, great heterogeneity in flow speeds puts certain areas of the ONSAS at risk of stagnation. Alterations of the ONSAS architecture aimed at mimicking pathological conditions highlight direct relationships between CSF volume and drainage capability. Compared to the morphological manipulations considered herein, the original ONSAS architecture seems optimized towards providing maximum mass transfer across a wide range of pressure gradients and volumetric rates, with emphasis on trabecular structures. This might shed light on pathophysiological processes leading to damage associated with insufficient CSF flow in patients with optic nerve compartment syndrome.


Hydrodynamics , Intraocular Pressure , Humans , Optic Nerve/pathology , Optic Nerve/physiology , Subarachnoid Space/physiology , Cerebrospinal Fluid Pressure/physiology , Cerebrospinal Fluid/physiology
10.
Neurol Med Chir (Tokyo) ; 64(2): 93-99, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38220165

The pathophysiology of syringomyelia remains poorly understood. Two prevailing challenges stand out: the need for a comprehensive understanding of its diverse types and the yet-to-be-explained mechanism of cerebrospinal fluid (CSF) retention in the syrinx despite its higher pressure than that in the adjacent subarachnoid space. Expanding on our previous proposal that direction-selective resistance to subarachnoid CSF flow drives syringomyelia genesis, this study uses a computer model to explore this mechanism further. We developed a computer simulation model to study spinal CSF dynamics, employing a lumped parameter approach with multiple compartments. This model replicated the to-and-fro movement of CSF in the spinal subarachnoid space and within an intraspinal channel. Subsequently, a direction-selective resistance-opposing only the caudal subarachnoid CSF flow-was introduced at a specific location within the subarachnoid space. Following the introduction of the direction-selective resistance, a consistent pressure increase was observed in the intraspinal channel downstream of the resistance. Importantly, this increase in pressure accumulated with every cycle of to-and-fro CSF flow. The accumulation results from the pressure drop across the resistance, and its effect on the spinal cord matrix creates a pumping action in the intraspinal channel. Our findings elucidate the mechanisms underlying our hypothesis that a direction-selective resistance to subarachnoid CSF flow causes syringomyelia. This comprehensively explains the various types of syringomyelia and resolves the puzzle of CSF retention in the syrinx despite a pressure gradient.


Syringomyelia , Humans , Syringomyelia/etiology , Syringomyelia/cerebrospinal fluid , Computer Simulation , Cerebrospinal Fluid Pressure/physiology , Subarachnoid Space , Cerebrospinal Fluid/physiology , Magnetic Resonance Imaging
11.
Childs Nerv Syst ; 40(5): 1377-1388, 2024 May.
Article En | MEDLINE | ID: mdl-38206441

PURPOSE: In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS: RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS: linear regression, student's t-test and analysis of variance (ANOVA). RESULTS: In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION: Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.


Cerebral Ventricles , Magnetic Resonance Imaging , Adult , Female , Humans , Child , Adolescent , Young Adult , Child, Preschool , Cerebral Aqueduct , Brain/blood supply , Hemodynamics , Cerebrospinal Fluid/physiology
12.
Fluids Barriers CNS ; 21(1): 12, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38279178

BACKGROUND: Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS: Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS: Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS: This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid  flow.


Lymphatic Vessels , Nicardipine , Blood Pressure , Nitroprusside/pharmacology , Nitroprusside/metabolism , Nicardipine/metabolism , Lymphatic Vessels/metabolism , Brain/blood supply , Cerebrospinal Fluid/physiology
13.
NMR Biomed ; 37(3): e5061, 2024 Mar.
Article En | MEDLINE | ID: mdl-37839870

Traumatic brain injury (TBI) is a major public health concern worldwide, with a high incidence and a significant impact on morbidity and mortality. The alteration of cerebrospinal fluid (CSF) dynamics after TBI is a well-known phenomenon; however, the underlying mechanisms and their implications for cognitive function are not fully understood. In this study, we propose a new approach to studying the alteration of CSF dynamics in TBI patients. Our approach involves using conventional echo-planar imaging-based functional MRI with no additional scan, allowing for simultaneous assessment of functional CSF dynamics and blood oxygen level-dependent-based functional brain activities. We utilized two previously suggested indices of (i) CSFpulse, and (ii) correlation between global brain activity and CSF inflow. Using CSFpulse, we demonstrated a significant decrease in CSF pulsation following TBI (p < 0.05), which was consistent with previous studies. Furthermore, we confirmed that the decrease in CSF pulsation was most prominent in the early months after TBI, which could be explained by ependymal ciliary loss, intracranial pressure increment, or aquaporin-4 dysregulation. We also observed a decreasing trend in the correlation between global brain activity and CSF inflow in TBI patients (p < 0.05). Our findings suggest that the decreased CSF pulsation after TBI could lead to the accumulation of toxic substances in the brain and an adverse effect on brain function. Further longitudinal studies with larger sample sizes, TBI biomarker data, and various demographic information are needed to investigate the association between cognitive decline and CSF dynamics after TBI. Overall, this study sheds light on the potential role of altered CSF dynamics in TBI-induced neurologic symptoms and may contribute to the development of novel therapeutic interventions.


Brain Injuries, Traumatic , Brain Injuries , Humans , Echo-Planar Imaging , Brain Injuries, Traumatic/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
14.
Sci Rep ; 13(1): 20989, 2023 11 28.
Article En | MEDLINE | ID: mdl-38017027

In Alligator mississippiensis the spinal dura is surrounded by a venous sinus; pressure waves can propagate in the spinal venous blood, and these spinal venous pressures can be transmitted to the spinal cerebrospinal fluid (CSF). This study was designed to explore pressure transfer between the spinal venous blood and the spinal CSF. At rest the cardiac-related CSF pulsations are attenuated and delayed, while the ventilatory-related pulsations are amplified as they move from the spinal venous blood to the spinal CSF. Orthostatic gradients resulted in significant alterations of both cardiac- and ventilatory-related CSF pulsations. Manual lateral oscillations of the alligator's tail created pressure waves in the spinal CSF that propagated, with slight attenuation but no delay, to the cranial CSF. Oscillatory pressure pulsations in the spinal CSF and venous blood had little influence on the underlying ventilatory pulsations, though the same oscillatory pulsations reduced the ventilatory- and increased the cardiac-related pulsations in the cranial CSF. In Alligator the spinal venous anatomy creates a more complex pressure relationship between the venous and CSF systems than has been described in humans.


Cerebrospinal Fluid Pressure , Dura Mater , Humans , Venous Pressure , Cerebrospinal Fluid/physiology , Blood Pressure/physiology
15.
J Neurosci Methods ; 399: 109971, 2023 11 01.
Article En | MEDLINE | ID: mdl-37722626

BACKGROUND: Cerebrospinal fluid (CSF) collection and its analysis are common medical practices useful in the diagnosis, therapy, and prevention of central nervous system (CNS) disorders. In recent years, several types of research have improved our insight into CSF and its role in health and disease. Yet, many characteristics of this fluid remain to be fully understood. NEW METHODS: Here, we describe how to collect CSF from embryonic, postnatal, and adult stages of the rat. In adults, CSF can be collected through simple stereotaxic surgery to expose the membrane overlying the cisterna magna (CM) of an anesthetized rat and collection of CSF through micropipette puncture through the membrane. In embryos and pups, CSF is aspirated, using a fire-polished micro-capillary pipette, from the CM of animals. RESULTS: Application of these methods provides the maximum volume of pure, uncontaminated CSF (embryonic day 19: 10-15 microliter, postnatal day 5: 20-30 microliter, adults: 100-200 microliter) with a success rate of approximately 95% in every age. COMPARISON WITH EXISTING METHODS: Compared to the existing protocols, these methods obtain considerable volumes of CSF, which may accelerate the measurement of biological markers in this fluid. Also, these techniques do not require surgical skills and according to the practical points mentioned during sampling, the procedures can be performed in rapid fashion. CONCLUSION: We describe simple methods for collecting CSF in live rats. These protocols provide clean, uncontaminated CSF for experiments to understand the exact role of this fluid in the development and maintenance of the CNS health.


Cisterna Magna , Spinal Puncture , Rats , Animals , Spinal Puncture/methods , Cisterna Magna/surgery , Specimen Handling/methods , Biomarkers , Cerebrospinal Fluid/physiology
16.
Sci Rep ; 13(1): 12405, 2023 07 31.
Article En | MEDLINE | ID: mdl-37524734

Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid (CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We develop a novel computational model that couples SD and CSF flow. We first use high order numerical simulations to solve a system of physiologically realistic reaction-diffusion equations which govern the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an empirical relationship between the excess potassium ion concentration in the extracellular space following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach is very general and could be extended in the future to obtain novel, quantitative insights into how CSF flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural stimulations.


Migraine Disorders , Stroke , Humans , Brain/physiology , Cerebrospinal Fluid Pressure/physiology , Extracellular Space , Cerebrospinal Fluid/physiology
17.
J Biomech ; 156: 111671, 2023 07.
Article En | MEDLINE | ID: mdl-37327645

Normal pressure hydrocephalus (NPH) is an intracranial disease characterized by an abnormal accumulation of cerebrospinal fluid (CSF) in brain ventricles within the normal range of intracranial pressure. Most NPH in aged patients is idiopathic (iNPH) and without any prior history of intracranial diseases. Although an abnormal increase of CSF stroke volume (hyper-dynamic CSF flow) in the aqueduct between the third and fourth ventricles has received much attention as a clinical evaluation index in iNPH patients, the biomechanical effects of this flow on iNPH pathophysiology are poorly understood. This study aimed to clarify the potential biomechanical effects of hyper-dynamic CSF flow through the aqueduct of iNPH patients using magnetic resonance imaging-based computational simulations. Ventricular geometries and CSF flow rates through aqueducts of 10 iNPH patients and 10 healthy control subjects were obtained from multimodal magnetic resonance images, and these CSF flow fields were simulated using computational fluid dynamics. As biomechanical factors, we evaluated wall shear stress on the ventricular wall and the extent of flow mixing, which potentially disturbs the CSF composition in each ventricle. The results showed that the relatively high CSF flow rate and large and irregular shapes of the aqueduct in iNPH resulted in large wall shear stresses localized in relatively narrow regions. Furthermore, the resulting CSF flow showed a stable cyclic motion in control subjects, whereas strong mixing during transport through the aqueduct was found in patients with iNPH. These findings provide further insights into the clinical and biomechanical correlates of NPH pathophysiology.


Hydrocephalus, Normal Pressure , Hydrocephalus , Humans , Aged , Cerebral Aqueduct/diagnostic imaging , Cerebral Aqueduct/physiology , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Cerebral Ventricles/diagnostic imaging , Magnetic Resonance Imaging/methods , Motion , Cerebrospinal Fluid/physiology
18.
World Neurosurg ; 176: e208-e218, 2023 Aug.
Article En | MEDLINE | ID: mdl-37187345

OBJECTIVE: To identify the morphological characteristics together with cerebrospinal fluid (CSF) hydrodynamics on preoperative magnetic resonance imaging that improve the prediction of foramen magnum decompression (FMD) treatment outcome for Chiari malformations type I (CM-I) patients compared with the CSF hydrodynamics-based model. METHODS: This retrospective study included CM-I patients who underwent FMD, phase-contrast cine magnetic resonance, and static MR between January 2018 and March 2022. The relationships of the preoperative CSF hydrodynamic quantifications derived from phase-contrast cine magnetic resonance and morphological measurements from static magnetic resonance imaging, clinical indicators with different outcomes, were analyzed with logistic regression analysis. The outcomes were determined using the Chicago Chiari Outcome Scale. The predictive performance was evaluated with receiver operating characteristic, calibration, decision curves and area under the receiver operating characteristic curve, net reclassification index, and integrated discrimination improvement and was compared with CSF hydrodynamics-based model. RESULTS: A total of 27 patients were included. 17 (63%) had improved outcomes and 10 (37%) had poor outcomes. The peak diastolic velocity of the aqueduct midportion (odd ratio, 5.17; 95% confidence interval: 1.08, 24.70; P = 0.039) and the fourth ventricle outlet diameter (odd ratio, 7.17; 95% confidence interval: 1.07, 48.16; P = 0.043) were predictors of different prognoses. The predictive performance improved significantly than the CSF hydrodynamics-based model. CONCLUSIONS: Combined CSF hydrodynamic and static morphologic MR measurements can better predict the response to FMD. A higher peak diastolic velocity of the aqueduct midportion and broader fourth ventricle outlet were associated with satisfying outcomes after decompression in CM-I patients.


Arnold-Chiari Malformation , Syringomyelia , Humans , Arnold-Chiari Malformation/diagnostic imaging , Arnold-Chiari Malformation/surgery , Arnold-Chiari Malformation/cerebrospinal fluid , Hydrodynamics , Fourth Ventricle/surgery , Retrospective Studies , Syringomyelia/surgery , Prognosis , Magnetic Resonance Imaging , Decompression, Surgical/methods , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
19.
PLoS One ; 18(5): e0285269, 2023.
Article En | MEDLINE | ID: mdl-37141309

How cerebrospinal fluid (CSF) drains from the human brain is of paramount importance to cerebral health and physiology. Obstructed CSF drainage results in increased intra-cranial pressure and a predictable cascade of events including dilated cerebral ventricles and ultimately cell death. The current and accepted model of CSF drainage in humans suggests CSF drains from the subarachnoid space into the sagittal sinus vein. Here we identify a new structure in the sagittal sinus of the human brain by anatomic cadaver dissection. The CSF canalicular system is a series of channels on either side of the sagittal sinus vein that communicate with subarachnoid cerebrospinal fluid via Virchow-Robin spaces. Fluorescent injection confirms that these channels are patent and that flow occurs independent of the venous system. Fluoroscopy identified flow from the sagittal sinus to the cranial base. We verify our previous identification of CSF channels in the neck that travel from the cranial base to the subclavian vein. Together, this information suggests a novel path for CSF drainage of the human brain that may represent the primary route for CSF recirculation. These findings have implications for basic anatomy, surgery, and neuroscience, and highlight the continued importance of gross anatomy to medical research and discovery.


Brain , Cerebrospinal Fluid Leak , Humans , Brain/physiology , Subarachnoid Space , Cranial Sinuses , Drainage , Cerebrospinal Fluid/physiology
20.
Science ; 379(6627): 84-88, 2023 01 06.
Article En | MEDLINE | ID: mdl-36603070

The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater. We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells. Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations. The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport.


Brain , Subarachnoid Space , Animals , Humans , Mice , Dura Mater/cytology , Dura Mater/physiology , Endothelium/cytology , Endothelium/physiology , Subarachnoid Space/cytology , Subarachnoid Space/physiology , Epithelium/physiology , Brain/anatomy & histology , Brain/immunology , Cerebrospinal Fluid/physiology
...