RESUMEN
Bone and fat cells have an antagonistic relationship. Adipocytes exert a toxic effect on bone cells in vitro through the secretion of fatty acids, which are synthesized by fatty acid synthase (FAS). Inhibition of FAS in vitro rescues osteoblasts from fat-induced toxicity and cell death. In this study, we hypothesized that FAS inhibition would mitigate the loss of bone mass in ovariectomized (OVX) mice. We treated OVX C57BL/6 mice with cerulenin (a known inhibitor of FAS) for 6â¯weeks and compared their bone phenotype with vehicle-treated controls. Cerulenin-treated mice exhibited a significant decrease in body weight, triglycerides, leptin, and marrow and subcutaneous fat without changes in serum glucose or calciotropic hormones. These effects were associated with attenuation of bone loss and normalization of the bone phenotype in the cerulenin-treated OVX group compared to the vehicle-treated OVX group. Our results demonstrate that inhibition of FAS enhances bone formation, induces uncoupling between osteoblasts and osteoclasts, and favors mineralization, thus providing evidence that inhibition of FAS could constitute a new anabolic therapy for osteoporosis.
Asunto(s)
Resorción Ósea/enzimología , Resorción Ósea/patología , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Ovariectomía , Adiposidad/efectos de los fármacos , Animales , Biomarcadores/sangre , Peso Corporal/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Remodelación Ósea/efectos de los fármacos , Resorción Ósea/sangre , Resorción Ósea/complicaciones , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cerulenina/farmacología , Ácido Graso Sintasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis/efectos de los fármacos , Osteoporosis/complicaciones , Fenotipo , Células RAW 264.7 , Factores de Transcripción/metabolismoRESUMEN
The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram-negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram-positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp-synthetases (RelBs , RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.
Asunto(s)
Adenosina Trifosfato/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Ácidos Grasos/metabolismo , Guanosina Trifosfato/metabolismo , Ligasas/genética , Potenciales de la Membrana/fisiología , Inanición/metabolismo , Cerulenina/farmacología , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Ácidos Grasos/biosíntesis , Estrés FisiológicoRESUMEN
Fatty acid synthase (FASN) is responsible for the endogenous production of fatty acids from acetyl-CoA and malonyl-CoA. Its overexpression is associated with poor prognosis in human cancers including melanomas. Our group has previously shown that the inhibition of FASN with orlistat reduces spontaneous lymphatic metastasis in experimental B16-F10 melanomas, which is a consequence, at least in part, of the reduction of proliferation and induction of apoptosis. Here, we sought to investigate the effects of pharmacological FASN inhibition on lymphatic vessels by using cell culture and mouse models. The effects of FASN inhibitors cerulenin and orlistat on the proliferation, apoptosis, and migration of human lymphatic endothelial cells (HDLEC) were evaluated with in vitro models. The lymphatic outgrowth was evaluated by using a murine ex vivo assay. B16-F10 melanomas and surgical wounds were produced in the ears of C57Bl/6 and Balb-C mice, respectively, and their peripheral lymphatic vessels evaluated by fluorescent microlymphangiography. The secretion of vascular endothelial growth factor C and D (VEGF-C and -D) by melanoma cells was evaluated by ELISA and conditioned media used to study in vitro lymphangiogenesis. Here, we show that cerulenin and orlistat decrease the viability, proliferation, and migration of HDLEC cells. The volume of lymph node metastases from B16-F10 experimental melanomas was reduced by 39% in orlistat-treated animals as well as the expression of VEGF-C in these tissues. In addition, lymphatic vessels from orlistat-treated mice drained more efficiently the injected FITC-dextran. Orlistat and cerulenin reduced VEGF-C secretion and, increase production of VEGF-D by B16-F10 and SK-Mel-25 melanoma cells. Finally, reduced lymphatic cell extensions, were observed following the treatment with conditioned medium from cerulenin- and orlistat-treated B16-F10 cells. Altogether, our results show that FASN inhibitors have anti-metastatic effects by acting on lymphatic endothelium and melanoma cells regardless the increase of lymphatic permeability promoted by orlistat.
Asunto(s)
Cerulenina/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Lactonas/farmacología , Vasos Linfáticos/efectos de los fármacos , Melanoma Experimental/prevención & control , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Humanos , Linfangiogénesis/efectos de los fármacos , Metástasis Linfática , Vasos Linfáticos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Orlistat , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Asunto(s)
Apoptosis/efectos de los fármacos , Cerulenina/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Queratinocitos/patología , Melanocitos/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Animales , Western Blotting , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Citrato (si)-Sintasa/antagonistas & inhibidores , Citocromos c/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Melanocitos/efectos de los fármacos , Melanocitos/enzimología , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/patología , Ratones , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
UNLABELLED: Cerulenin is a fungal toxin that inhibits both eukaryotic and prokaryotic ketoacyl-acyl carrier protein synthases or condensing enzymes. It has been used experimentally to treat cancer and obesity, and is a potent inhibitor of bacterial growth. Understanding the molecular mechanisms of resistance to cerulenin and similar compounds is thus highly relevant for human health. We have previously described a Bacillus subtilis cerulenin-resistant strain, expressing a point-mutated condensing enzyme FabF (FabF[I108F]) (i.e. FabF with isoleucine 108 substituted by phenylalanine). We now report the crystal structures of wild-type FabF from B. subtilis, both alone and in complex with cerulenin, as well as of the FabF[I108F] mutant protein. The three-dimensional structure of FabF[I108F] constitutes the first atomic model of a condensing enzyme that remains active in the presence of the inhibitor. Soaking the mycotoxin into preformed wild-type FabF crystals allowed for noncovalent binding into its specific pocket within the FabF core. Interestingly, only co-crystallization experiments allowed us to trap the covalent complex. Our structure shows that the covalent bond between Cys163 and cerulenin, in contrast to that previously proposed, implicates carbon C3 of the inhibitor. The similarities between Escherichia coli and B. subtilis FabF structures did not explain the reported inability of ecFabF[I108F] (i.e. FabF from Escherichia coli with isoleucine 108 substituted by phenylalanine) to elongate medium and long-chain acyl-ACPs. We now demonstrate that the E. coli modified enzyme efficiently catalyzes the synthesis of medium and long-chain ketoacyl-ACPs. We also characterized another cerulenin-insensitive form of FabF, conferring a different phenotype in B. subtilis. The structural, biochemical and physiological data presented, shed light on the mechanisms of FabF catalysis and resistance to cerulenin. DATABASE: Crystallographic data (including atomic coordinates and structure factors) have been deposited in the Protein Data Bank under accession codes 4LS5, 4LS6, 4LS7 and 4LS8.
Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cerulenina/farmacología , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/genética , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Genes Bacterianos , Humanos , Modelos Moleculares , Micotoxinas/farmacología , Mutación Puntual , Estructura Cuaternaria de Proteína , Electricidad EstáticaRESUMEN
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells.
Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Cerulenina/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Lactonas/farmacología , Melanoma/enzimología , Análisis de Varianza , Animales , Apoptosis/fisiología , Calcio/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Lípidos/biosíntesis , Melanoma/fisiopatología , Ratones , Orlistat , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Bacteria stringently regulate the synthesis of their membrane phospholipids, but the responsible regulatory mechanisms are incompletely understood. Bacillus subtilis FabF, the target of the mycotoxin cerulenin, catalyses the condensation of malonyl-ACP with acyl-ACP to extend the growing acyl chain by two carbons. Here we show that B. subtilis strains containing the fabF1 allele, which codes for the cerulenin-insensitive protein FabF[I108F], overexpressed several genes involved in fatty acid and phospholipid biosynthesis (the fap regulon) and had significantly elevated levels of malonyl-CoA. These results pinpointed FabF[I108F] as responsible for the increased malonyl-CoA production, which in turn acts as an inducer of the fap regulon by impairing the binding of the FapR repressor to its DNA targets. Synthesis of acyl-ACPs by a cell-free fatty acid system prepared from fabF1 cells showed the accumulation of short- and medium-chain acyl-ACPs. These results indicate that the acyl-ACP chain length acceptance of FabF[I108F] is biased towards shorter acyl-ACPs. We also provide evidence that upregulation of FabF[I108F] is essential for survival and for resistance to cerulenin of fabF1 cells. These findings indicate that malonyl-CoA is a key molecule to monitor lipid metabolism functioning and trigger appropriate genetic and biochemical adjustments to relieve dysfunctions of this essential metabolic pathway.
Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Bacillus subtilis/enzimología , Regulación Bacteriana de la Expresión Génica , Metabolismo de los Lípidos/genética , Malonil Coenzima A/genética , Proteínas Represoras/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/efectos de los fármacos , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Bacillus subtilis/genética , Cerulenina/farmacología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo , Regulón , Proteínas Represoras/genéticaRESUMEN
Cerulenin is a fungal mycotoxin that potently inhibits fatty acid synthesis by covalent modification of the active site thiol of the chain-elongation subtypes of beta-ketoacyl-acyl carrier protein (ACP) synthases. The Bacillus subtilis fabF (yjaY) gene (fabF(b)) encodes an enzyme that catalyzes the condensation of malonyl-ACP with acyl-ACP to extend the growing acyl chain by two carbons. There were two mechanisms by which B. subtilis adapted to exposure to this antibiotic. First, reporter gene analysis demonstrated that transcription of the operon containing the fabF gene increased eightfold in response to a cerulenin challenge. This response was selective for the inhibition of fatty acid synthesis, since triclosan, an inhibitor of enoyl-ACP reductase, triggered an increase in fabF reporter gene expression while nalidixic acid did not. Second, spontaneous mutants arose that exhibited a 10-fold increase in the MIC of cerulenin. The mutation mapped at the B. subtilis fabF locus, and sequence analysis of the mutant fabF allele showed that a single base change resulted in the synthesis of FabF(b)[I108F]. The purified FabF(b) and FabF(b)[I108F] proteins had similar specific activities with myristoyl-ACP as the substrate. FabF(b) exhibited a 50% inhibitory concentration (IC(50)) of cerulenin of 0.1 microM, whereas the IC(50) for FabF(b)[I108] was 50-fold higher (5 microM). These biochemical data explain the absence of an overt growth defect coupled with the cerulenin resistance phenotype of the mutant strain.
Asunto(s)
Bacillus subtilis/efectos de los fármacos , Cerulenina/farmacología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Microbiana , Regulación Bacteriana de la Expresión Génica , Genes Esenciales , Pruebas de Sensibilidad Microbiana , Mutación , Sistemas de Lectura Abierta/genética , Sistemas de Lectura Abierta/fisiología , Plásmidos/genética , Transcripción GenéticaRESUMEN
A hallmark of sporulation of Bacillus subtilis is the formation of two distinct cells by an asymmetric septum. The developmental programme of these two cells involves the compartmentalized activities of sigmaE in the larger mother cell and of sigmaF in the smaller prespore. A potential role of de novo lipid synthesis on development was investigated by treating B. subtilis cells with cerulenin, a specific inhibitor of fatty acid biosynthesis. These experiments demonstrated that spore formation requires de novo fatty acid synthesis at the onset of sporulation. The transcription of the sporulation genes that are induced before the formation of two cell types or that are under the exclusive control of sigmaF occurred in the absence of fatty acid synthesis, as monitored by spo-lacZ fusions. However, expression of lacZ fusions to genes that required activation of sigmaE for transcription was inhibited in the absence of fatty acid synthesis. The block in sigmaE-directed gene expression in cerulenin-treated cells was caused by an inability to process pro-sigmaE to its active form. Electron microscopy revealed that these fatty acid-starved cells initiate abnormal polar septation, suggesting that de novo fatty acid synthesis may be essential to couple the activation of the mother cell transcription factors with the formation of the differentiating cells.
Asunto(s)
Bacillus subtilis/fisiología , Ácidos Grasos/biosíntesis , Regulación Bacteriana de la Expresión Génica , Bacillus subtilis/genética , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Cerulenina/farmacología , Ácido Graso Sintasas/metabolismo , Genes Bacterianos/genética , Microscopía Electrónica , Regiones Promotoras Genéticas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Factor sigma/genética , Factor sigma/metabolismo , Esporas Bacterianas/fisiología , Esporas Bacterianas/ultraestructura , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
The recent upsurge in the incidence of tuberculosis with significant emergence of multidrug-resistant cases has focused on the priority of discovering effective new drugs and on the strategies to augment the potential of existing drugs against Mycobacterium tuberculosis. In the present study, we investigated cerulenin and trans-cinnamic acid, which have recently been shown to augment the activity of various antibiotics against Mycobacterium avium [Antimicrob. Agents Chemother. 38 (1994) 2287-2295], to enhance the activity of isoniazid, rifampin, ofloxacin, amikacin and clofazimine against M. tuberculosis. The synergy observed was compared with identical combinations using ethambutol, a cell wall-inhibiting drug used in standard antituberculous chemotherapy. The results showed that ethambutol resulted in synergistic activity in 12/30 drug combinations, as compared to 15/36 for cerulenin and 101/18 for trans-cinnamic acid. This increase in drug activity was even observed with drug-resistant isolates. Use of novel antimicrobials and understanding of their mechanisms of action may be an effective strategy to determine previously undescribed targets for future drug development.
Asunto(s)
Antibióticos Antituberculosos/farmacología , Antituberculosos/farmacología , Cerulenina/farmacología , Cinamatos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Etambutol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
The antibiotic cerulenin, an inhibitor of lipid synthesis, was shown to suppress Mayaro virus replication in Aedes albopictus cells at non-cytotoxic doses. Cerulenin blocked the incorporation of [3H]glycerol into lipids when present at any time post infection (p.i.). Cerulenin added at the beginning of infection inhibited the synthesis of virus proteins. However, when this antibiotic was added at later stages of infection, it had only a mild effect on the virus protein synthesis. The possibility that cerulenin acts by blocking an initial step in the Mayaro virus replication after virus entry and before late viral translation is discussed.