Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.192
1.
AAPS PharmSciTech ; 25(5): 105, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724807

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.


Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Microspheres , Naltrexone , Particle Size , Naltrexone/chemistry , Naltrexone/administration & dosage , Naltrexone/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Emulsions/chemistry , Drug Compounding/methods , Solubility , Solvents/chemistry
2.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747276

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


2-Hydroxypropyl-beta-cyclodextrin , Arginine , Aripiprazole , Calorimetry, Differential Scanning , Lysine , Solubility , beta-Cyclodextrins , Aripiprazole/chemistry , Arginine/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Lysine/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Freeze Drying , Antipsychotic Agents/chemistry , Drug Stability , Microscopy, Electron, Scanning , Drug Compounding , Chemistry, Pharmaceutical/methods
3.
AAPS PharmSciTech ; 25(5): 112, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744715

This study aimed to develop a propellant-free topical spray formulation of Etodolac (BCS-II), a potent NSAID, which could be beneficial in the medical field for the effective treatment of pain and inflammation conditions. The developed novel propellant-free spray formulation is user-friendly, cost-effective, propellant-free, eco-friendly, enhances the penetration of Etodolac through the skin, and has a quick onset of action. Various formulations were developed by adjusting the concentrations of different components, including lecithin, buffering agents, film-forming agents, plasticizers, and permeation enhancers. The prepared propellant-free spray formulations were then extensively characterized and evaluated through various in vitro, ex vivo, and in vivo parameters. The optimized formulation exhibits an average shot weight of 0.24 ± 0.30 ml and an average drug content or content uniformity of 87.3 ± 1.01% per spray. Additionally, the optimized formulation exhibits an evaporation time of 3 ± 0.24 min. The skin permeation study demonstrated that the permeability coefficients of the optimized spray formulation were 21.42 cm/h for rat skin, 13.64 cm/h for mice skin, and 18.97 cm/h for the Strat-M membrane. When assessing its potential for drug deposition using rat skin, mice skin, and the Strat-M membrane, the enhancement ratios for the optimized formulation were 1.88, 2.46, and 1.92, respectively against pure drug solution. The findings from our study suggest that the propellant-free Etodolac spray is a reliable and safe topical formulation. It demonstrates enhanced skin deposition, and improved effectiveness, and is free from any skin irritation concerns.


Administration, Cutaneous , Etodolac , Skin Absorption , Skin , Animals , Etodolac/administration & dosage , Etodolac/pharmacokinetics , Etodolac/chemistry , Rats , Mice , Skin Absorption/physiology , Skin/metabolism , Skin/drug effects , Male , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Acute Pain/drug therapy , Chemistry, Pharmaceutical/methods , Permeability , Rats, Sprague-Dawley , Drug Compounding/methods
4.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710894

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
5.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710921

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
6.
AAPS PharmSciTech ; 25(5): 93, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693316

Tolterodine tartrate (TOTA) is associated with adverse effect, high hepatic access, varied bioavailability, slight aqueous solubility, and short half-life after oral delivery. Hansen solubility parameters (HSP, HSPiP program), experimental solubility (T = 298.2 to 318.2 K and p = 0.1 MPa), computational (van't Hoff and Apelblat models), and thermodynamic models were used to the select solvent(s). HSPiP predicted PEG400 as the most suitable co-solvent based on HSP values (δd = 17.88, δp = 4.0, and δh = 8.8 of PEG400) and comparable to the drug (δd = 17.6, δp = 2.4, and δh = 4.6 of TOTA). The experimental mole fraction solubility of TOTA was maximum (xe = 0.0852) in PEG400 confirming the best fit of the prediction. The observed highest solubility was attributed to the δp and δh interacting forces. The activity coefficient (ϒi) was found to be increased with temperature. The higher values of r2 (linear regression coefficient) and low RMSD (root mean square deviation) indicated a good correlation between the generated "xe" data for crystalline TOTA and the explored models (modified Apelblat and van't Hoff models). TOTA solubility in "PEG400 + water mixture" was endothermic and entropy-driven. IR (immediate release product) formulation can be tailored using 60% PEG400 in buffer solution for 2 mg of TOTA in 0.25 mL (dosing volume). The isotonic binary solution was associated with a pH of 7.2 suitable for sub-Q delivery. The approach would be a promising alternative with ease of delivery to children and aged patients.


Solubility , Solvents , Thermodynamics , Tolterodine Tartrate , Humans , Tolterodine Tartrate/administration & dosage , Tolterodine Tartrate/chemistry , Tolterodine Tartrate/pharmacokinetics , Solvents/chemistry , Polyethylene Glycols/chemistry , Biological Availability , Chemistry, Pharmaceutical/methods , Injections, Subcutaneous , Drug Delivery Systems/methods
7.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731421

The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.


Chemistry, Pharmaceutical , Piperidines , Piperidines/chemistry , Chemistry, Pharmaceutical/methods , Humans , Drug Design , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
8.
AAPS PharmSciTech ; 25(5): 111, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740666

This in-depth study looks into how artificial intelligence (AI) could be used to make formulation development easier in fluidized bed processes (FBP). FBP is complex and involves numerous variables, making optimization challenging. Various AI techniques have addressed this challenge, including machine learning, neural networks, genetic algorithms, and fuzzy logic. By integrating AI with experimental design, process modeling, and optimization strategies, intelligent systems for FBP can be developed. The advantages of AI in this context include improved process understanding, reduced time and cost, enhanced product quality, and robust formulation optimization. However, data availability, model interpretability, and regulatory compliance challenges must be addressed. Case studies demonstrate successful applications of AI in decision-making, process outcome prediction, and scale-up. AI can improve efficiency, quality, and cost-effectiveness in significant ways. Still, it is important to think carefully about data quality, how easy it is to understand, and how to follow the rules. Future research should focus on fully harnessing the potential of AI to advance formulation development in FBP.


Artificial Intelligence , Chemistry, Pharmaceutical , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Technology, Pharmaceutical/methods , Fuzzy Logic , Neural Networks, Computer , Machine Learning , Algorithms
9.
Eur J Pharm Sci ; 197: 106765, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608735

Lipid-based formulations (LBFs) are an enabling-formulation approach for lipophilic poorly water-soluble compounds. In LBFs, drugs are commonly pre-dissolved in lipids, and/or surfactants/cosolvents, hereby avoiding the rate-limiting dissolution step. According to the Lipid formulation classification system, proposed by Pouton in 2006, in type II LBFs a surfactant with an HLB-value lower than 12 is added to the lipids. If high drug doses are required, e.g. for preclinical toxicity studies, supersaturated LBFs prepared at elevated temperatures may be a possibility to increase drug exposure. In the present study, the impact of digestion on drug absorption in rats was studied by pre-dosing of the lipase inhibitor orlistat. The lipid chain length of the type II LBFs was varied by administration of a medium-chain- (MC) and a long-chain (LC)-based formulation. Different drug doses, both non-supersaturated and supersaturated, were applied. Due to an inherent precipitation tendency of cinnarizine in supersaturated LBFs, the effect of the addition of the precipitation inhibitor Soluplus® was also investigated. The pharmacokinetic results were also evaluated by multiple linear regression. In most cases LC-based LBFs did not perform better in vivo, in terms of a higher area under the curve (AUC0-24 h) and maximal plasma concentration (Cmax), than MC-based LBFs. The administration of supersaturated LBFs resulted in increased AUC0-24 h (1.5 - 3.2-fold) and Cmax (1.1 - 2.6-fold)-values when compared to the non-supersaturated equivalents. Lipase inhibition led to a decreased drug exposure in most cases, especially for LC formulations (AUC0-24 h reduced to 47 - 67%, Cmax to 46 - 62%). The addition of Soluplus® showed a benefit to drug absorption from supersaturated type II LBFs (1.2 - 1.7-fold AUC0-24 h), due to an increased solubility of cinnarizine in the formulation. Upon dose-normalization of the pharmacokinetic parameters, no beneficial effect of Soluplus® could be demonstrated.


Cinnarizine , Lipids , Cinnarizine/chemistry , Cinnarizine/pharmacokinetics , Cinnarizine/administration & dosage , Animals , Male , Lipids/chemistry , Solubility , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/administration & dosage , Rats, Wistar , Orlistat/administration & dosage , Orlistat/pharmacokinetics , Intestinal Absorption , Rats , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Lipase/antagonists & inhibitors , Polyvinyls/chemistry , Chemical Precipitation , Surface-Active Agents/chemistry , Chemistry, Pharmaceutical/methods
10.
AAPS PharmSciTech ; 25(5): 91, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664316

Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.


Antineoplastic Agents , Drug Delivery Systems , Neoplasms , Phospholipids , Phospholipids/chemistry , Humans , Drug Delivery Systems/methods , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Solubility , Animals , Chemistry, Pharmaceutical/methods , Biological Availability , Emulsions/chemistry , Drug Carriers/chemistry , Drug Compounding/methods
11.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649513

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Anti-Bacterial Agents , Emulsions , Impetigo , Quinolones , Animals , Impetigo/drug therapy , Mice , Quinolones/administration & dosage , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Gels/chemistry , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Excipients/chemistry , Skin/drug effects , Skin/metabolism , Microbial Sensitivity Tests/methods , Skin Absorption/drug effects , Administration, Topical , Viscosity , Drug Compounding/methods
12.
AAPS J ; 26(3): 52, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649550

The long treatment period and development of drug resistance in tuberculosis (TB) necessitates the discovery of new anti-tubercular agents. The drug discovery program of the institute leads to the development of an anti-tubercular lead (IIIM-019), which is an analogue of nitrodihydroimidazooxazole and exhibited promising anti-tubercular action. However, IIIM-019 displays poor aqueous solubility (1.2 µg/mL), which demands suitable dosage form for its efficient oral administration. In the present study, third generation solid dispersion-based formulation was developed to increase the solubility and dissolution of IIIM-019. The solubility profile of IIIM-019 using various polymeric carriers was determined and subsequently, PVP K-30 and P-407 were selected for preparation of binary and ternary solid dispersion. The third-generation ternary solid dispersion comprising PVP K-30 and P-407 revealed a remarkable enhancement in the aqueous solubility of IIIM-019. Physicochemical characterization of the developed formulations was done by employing FTIR spectroscopy, scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and dynamic light scattering analysis. The dissolution study indicated an impressive release profile with the optimized formulation. The optimized formulation was further examined for cytotoxicity, cellular uptake, and hemolytic activity. The results indicated that the formulation had no apparent cytotoxicity on Caco-2 cells and was non-hemolytic in nature. Moreover, the optimized formulation showed significantly improved anti-tubercular activity compared to the native molecule. These findings showed that the developed third generation ternary solid dispersion could be a promising option for the oral delivery of investigated anti-tubercular molecule.


Antitubercular Agents , Solubility , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Humans , Drug Carriers/chemistry , Mycobacterium tuberculosis/drug effects , Drug Liberation , Caco-2 Cells , Drug Compounding/methods , Chemistry, Pharmaceutical/methods
13.
Int J Pharm ; 656: 124084, 2024 May 10.
Article En | MEDLINE | ID: mdl-38580072

In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, ß0 and ßt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.


Drug Liberation , Particle Size , Solubility , Tablets , Porosity , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Models, Chemical
14.
Int J Pharm ; 656: 124090, 2024 May 10.
Article En | MEDLINE | ID: mdl-38582101

Advancements in industrial technologies and the application of quality by design (QbD) guidelines are shifting the attention of manufacturers towards innovative production techniques. In the pharmaceutical field, there is a significant focus on the implementation of continuous processes, in which the production stages are carried out continuously, without the need to interrupt the process and store the production intermediates, as in traditional batch production. Such innovative production techniques also require the development of proper analytical methods able to analyze the products in-line, while still being processed. The present study aims to compare a traditional batch manufacturing process with an alternative continuous one. To this end, a real pharmaceutical formulation was used, substituting the active pharmaceutical ingredient (API) with riboflavin, at the concentration of 2 %w/w. Moreover, a direct and non-destructive analytical method based on UV-Vis reflectance spectroscopy was applied for the quantification of riboflavin in the final tablets, and compared with a traditional absorbance analysis. Good results were obtained in the comparison of both the two manufacturing processes and the two analytical methods, with R2 higher than 0.9 for all the calculated calibration models and predicted riboflavin concentrations that never significantly overcame the 15 % limits recommended by the pharmacopeia. The continuous production method demonstrated to be as reliable as the batch one, allowing to save time and money in the production step. Moreover, UV-Vis reflectance was proved to be an interesting alternative to absorption spectroscopy, which, with the proper technology, could be implemented for in-line process control.


Riboflavin , Spectrophotometry, Ultraviolet , Tablets , Technology, Pharmaceutical , Riboflavin/analysis , Riboflavin/chemistry , Technology, Pharmaceutical/methods , Spectrophotometry, Ultraviolet/methods , Drug Compounding/methods , Chemistry, Pharmaceutical/methods
15.
Int J Pharm ; 656: 124108, 2024 May 10.
Article En | MEDLINE | ID: mdl-38604540

Lipid-based formulations (LbFs) are an extensively used approach for oral delivery of poorly soluble drug compounds in the form of lipid suspension and lipid solution. However, the high target dose and inadequate lipid solubility limit the potential of brick dust molecules to be formulated as LbFs. Thus, the complexation of such molecules with a lipophilic counterion can be a plausible approach to improve the solubility in lipid-based solutions via reducing drug crystallinity and polar surface area. The study aimed to enhance drug loading in lipid solution for Nilotinib (Nil) through complexation or salt formation with different lipophilic counterions. We synthesized different lipophilic salts/ complexes via metathesis reactions and confirmed their formation by 1H NMR and FTIR. Docusate-based lipophilic salt showed improved solubility in medium-chain triglycerides (∼7 to 7.5-fold) and long-chain triglycerides (∼30 to 35-fold) based lipids compared to unformulated crystalline Nil. The increased lipid solubility could be attributed to the reduction in drug crystallinity which was further confirmed by the PXRD and DSC. Prototype LbFs were prepared to evaluate drug loading and their physicochemical characteristics. The findings suggested that structural features of counterion including chain length and lipophilicity affect the drug loading in LbF. In addition, physical stability testing of formulations was performed, inferring that aliphatic sulfate-based LbFs were stable with no sign of drug precipitation or salt disproportionation. An in vitro lipolysis-permeation study revealed that the primary driver of absorptive flux is the solubilization of the drug and reduced amount of lipid. Further, the in vivo characterization was conducted to measure the influence of increased drug load on oral bioavailability. Overall, the results revealed enhanced absorption of lipophilic salt-based LbF over unformulated crystalline Nil and conventional LbF (drug load equivalent to equilibrium solubility) which supports the idea that lipophilic salt-based LbF enhances drug loading, and supersaturation-mediated drug solubilization, unlocking the full potential of LbF.


Lipids , Salts , Solubility , Salts/chemistry , Animals , Lipids/chemistry , Male , Administration, Oral , Drug Compounding/methods , Pyrimidines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Dust , Drug Liberation , Rats , Chemistry, Pharmaceutical/methods , Hydrophobic and Hydrophilic Interactions , Triglycerides/chemistry , Drug Stability , Drug Carriers/chemistry , Crystallization
16.
Int J Pharm ; 656: 124100, 2024 May 10.
Article En | MEDLINE | ID: mdl-38609059

Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.


Tablets , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Drug Compounding/methods , Quality Control , Powders/chemistry , Chemistry, Pharmaceutical/methods , Spectroscopy, Near-Infrared/methods , Excipients/chemistry , Solubility , Drug Liberation
17.
Int J Pharm ; 656: 124116, 2024 May 10.
Article En | MEDLINE | ID: mdl-38615803

Inhalation of pharmaceutical aerosol formulations is widely used to treat respiratory diseases. Spatially resolved thermal characterization offers promise for better understanding drug release rates from particles; however, this has been an analytical challenge due to the small particle size (from a few micrometers down to nanometers) and the complex composition of the formulations. Here, we employ nano-thermal analysis (nanoTA) to probe the nanothermal domain of a pharmaceutical aerosol formulation containing a mixture of fluticasone propionate (FP), salmeterol xinafoate (SX), and excipient lactose, which is widely used to treat asthma and chronic obstructive pulmonary disease (COPD). Furthermore, atomic force microscopy-infrared spectroscopy (AFM-IR) and AFM force measurements are performed to provide nanochemical and nanomechanical information to complement the nanothermal data. The colocalized thermal and chemical mapping clearly reveals the surface heterogeneity of the drugs in the aerosol particles and demonstrates the contribution of the surface chemical composition to the variation in the thermal properties of the particles. We present a powerful analytical approach for in-depth characterization of thermal/chemical/morphological properties of dry powder inhaler particles at micro- and nanometer scales. This approach can be used to facilitate the comparison between generics and reference inhalation products and further the development of high-performance pharmaceutical formulations.


Aerosols , Dry Powder Inhalers , Fluticasone , Lactose , Microscopy, Atomic Force , Particle Size , Powders , Salmeterol Xinafoate , Fluticasone/chemistry , Fluticasone/administration & dosage , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Lactose/chemistry , Microscopy, Atomic Force/methods , Excipients/chemistry , Administration, Inhalation , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/chemistry , Spectrophotometry, Infrared/methods , Chemistry, Pharmaceutical/methods , Surface Properties
18.
Curr Drug Discov Technol ; 21(1): e101023222025, 2024.
Article En | MEDLINE | ID: mdl-38629170

Recently, it has been observed that newly developed drugs are lipophilic and have low aqueous solubility issues, which results in a lower dissolution rate and bioavailability of the drugs. To overcome these issues, the liquisolid technique, an innovative and advanced approach, comes into play. This technique involves the conversion of the drug into liquid form by dissolving it in non-volatile solvent and then converting the liquid medication into dry, free-flowing, and compressible form by the addition of carrier and coating material. It offers advantages like low cost of production, easy method of preparation, and compactable with thermo labile and hygroscopic drugs. It has been widely applied for BCS II drugs to enhance dissolution profile. Improving bioavailability, providing sustained release, minimizing pH influence on drug dissolution, and improving drug photostability are some of the other promising applications of this technology. This review article presents an overview of the liquisolid technique and its applications in formulation development.


Biopharmaceutics , Chemistry, Pharmaceutical , Chemistry, Pharmaceutical/methods , Solubility , Drug Liberation , Water , Tablets
19.
Chem Pharm Bull (Tokyo) ; 72(4): 374-380, 2024.
Article En | MEDLINE | ID: mdl-38599850

Tablets are the most commonly used dosage form in the pharmaceutical industry, and their properties such as disintegration, dissolution, and portability are influenced by their strength. However, in industry, the mixing fraction of powders to obtain a tablet compact with sufficient strength is determined based on empirical rules. Therefore, a method for predicting tablet strength based on the properties of a single material is required. The objective of this study was to quantitatively evaluate the relationship between the compression properties and tablet strength of powder mixtures. The compression properties of the powder mixtures with different plasticities were evaluated based on the force-displacement curves obtained from the powder compression tests. Heckel and compression energy analyses were performed to evaluate compression properties. During the compression energy analysis, the ratio of plastic deformation energy to elastic deformation energy (Ep/Ee) was assumed to be the plastic deformability of the powder. The quantitative relationship between the compression properties and tensile strength of the tablets was investigated. Based on the obtained relationship and the compression properties of a single material, a prediction equation was put forward for the compression properties of the powder mixture. Subsequently, a correlation equation for tablet strength was proposed by combining the values of K and Ep/Ee obtained from the Heckel and compression energy analyses, respectively. Finally, by substituting the compression properties of the single material and the mass fraction of the plastic material into the proposed equation, the tablet strength of the powder mixture with different plastic deformabilities was predicted.


Chemistry, Pharmaceutical , Chemistry, Pharmaceutical/methods , Powders , Tensile Strength , Tablets , Pressure , Drug Compounding
20.
J Med Chem ; 67(9): 6899-6905, 2024 May 09.
Article En | MEDLINE | ID: mdl-38662285

Earth is currently experiencing a mass extinction event. The flora and fauna of our planet are experiencing mass die-offs from a multitude of factors, with wildlife disease emerging as one parameter where medicinal chemists are equipped to intervene. While contemporary medicinal chemistry focuses on human health, many traditional pharmaceutical companies have historic roots in human health, animal health, and plant health. This trifecta of health sciences perfectly maps to the current field of One Health, which recognizes that optimal health outcomes can only be achieved through the health of humans, plants, animals, and their shared environments. This Perspective imagines a world where state-of-the-art medicinal chemistry tactics are used to prevent the extinction of endangered species and points to preliminary work in the emerging area of conservation medicine.


Chemistry, Pharmaceutical , Humans , Animals , Chemistry, Pharmaceutical/methods , Endangered Species
...