Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.060
1.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38667156

Covalent organic frameworks (COFs) are porous crystals that have high designability and great potential in designing, encapsulating, and immobilizing nanozymes. COF nanozymes have also attracted extensive attention in analyte sensing and detection because of their abundant active sites, high enzyme-carrying capacity, and significantly improved stability. In this paper, we classify COF nanozymes into three types and review their characteristics and advantages. Then, the synthesis methods of these COF nanozymes are introduced, and their performances are compared in a list. Finally, the applications of COF nanozymes in environmental analysis, food analysis, medicine analysis, disease diagnosis, and treatment are reviewed. Furthermore, we also discuss the application prospects of COF nanozymes and the challenges they face.


Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques , Nanostructures , Chemistry, Analytic , Food Analysis , Chemistry Techniques, Analytical/methods
2.
Mikrochim Acta ; 191(4): 185, 2024 03 07.
Article En | MEDLINE | ID: mdl-38451330

A dual-mode sensor was developed for detecting acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) via bifunctional BSA-CeO2 nanoclusters (NCs) with oxidase-mimetic activity and fluorescence property. The dual-mode sensor has the characteristics of self-calibration and self-verification, meeting the needs of different detection conditions and provide more accurate results. The colorimetric sensor and fluorescence sensor have been successfully used for detecting AChE with limit of detection (LOD) of 0.081 mU/mL and 0.056 mU/mL, respectively, while the LOD for OPs were 0.9 ng/mL and 0.78 ng/mL, respectively. The recovery of AChE was 93.9-107.2% and of OPs was 95.8-105.0% in actual samples. A novel strategy was developed to monitor pesticide residues and detect AChE level, which will motivate future work to explore the potential applications of multifunctional nanozymes.


Acetylcholinesterase , Chemistry Techniques, Analytical , Pesticides , Smartphone , Acetylcholinesterase/analysis , Hydrogels , Organophosphorus Compounds , Pesticides/adverse effects , Chemistry Techniques, Analytical/methods
3.
Eur J Pharm Sci ; 192: 106633, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37951317

Recently, the potentially highly carcinogenic N-nitrosamines (NAs) have become the focus of pharmaceutical regulatory authorities, the pharmaceutical industry and researchers because trace amounts have been detected in some drug products (DPs), resulting in drug supply shortages. In the absence of sufficient analytical methods for the determination of multiple regulated low-molecular-weight NAs in various DPs, a robust, selective, sensitive and accurate method based on sample preparation by solid phase extraction, followed by liquid chromatography high-resolution mass spectrometry for the simultaneous analysis of 13 regulated low-molecular-weight NAs was developed. The best results for the cleanup were obtained using Strata X-C SPE cartridge. The proposed method was successfully validated according to the USP general chapter 〈1469〉, demonstrating its excellent linearity, accuracy and precision in wide analytical ranges, adjusted to NAs acceptable intake limits. The achieved limits of quantitation correspond to 30 % or less of the acceptable intake limits. The developed analytical method was applied to 16 commercially available DPs containing one to three active pharmaceutical ingredients with different physicochemical properties. Only N-Nitrosodimethylamine was detected in DPs containing ranitidine at levels exceeding the regulatory AI limits by 37.6 - 57.4-fold. In addition, the robustness of the method was confirmed on a considerable number of DPs containing different active ingredients, demonstrating the suitability of the analytical method for routine quality control of different DPs, thus mitigate the risk to human health.


Chemistry Techniques, Analytical , Nitrosamines , Pharmaceutical Preparations , Humans , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Mass Spectrometry , Nitrosamines/analysis , Pharmaceutical Preparations/chemistry , Solid Phase Extraction/methods , Chemistry Techniques, Analytical/methods
4.
J Biol Chem ; 300(2): 105615, 2024 Feb.
Article En | MEDLINE | ID: mdl-38159850

Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.


Acetylglucosamine , Chemistry Techniques, Analytical , Signal Transduction , Acetylglucosamine/analysis , Acetylglucosamine/metabolism , Chemistry Techniques, Analytical/methods , Receptors, G-Protein-Coupled/metabolism , Biochemistry/methods , Biotechnology/methods
6.
J Vet Diagn Invest ; 35(5): 470-483, 2023 Sep.
Article En | MEDLINE | ID: mdl-37313802

Anticoagulant rodenticides (ARs) are used to control rodent populations. Poisoning of non-target species can occur by accidental consumption of commercial formulations used for rodent control. A robust method for determining ARs in animal tissues is important for animal postmortem diagnostic and forensic purposes. We evaluated an ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) method to quantify 8 ARs (brodifacoum, bromadiolone, chlorophacinone, coumachlor, dicoumarol, difethialone, diphacinone, warfarin) in a wide range of animal (bovine, canine, chicken, equine, porcine) liver samples, including incurred samples. We further evaluated UPLC-MS in 2 interlaboratory comparison (ILC) studies; one an ILC exercise (ICE), the other a proficiency test (PT). The limits of detection of UPLC-MS were 0.3-3.1 ng/g, and the limits of quantification were 0.8-9.4 ng/g. The recoveries obtained using UPLC-MS were 90-115%, and relative SDs were 1.2-13% for each of the 8 ARs for the 50, 500, and 2,000 ng/g spiked liver samples. The overall accuracy from the laboratories participating in the 2 ILC studies (4 and 11 laboratories for ICE and PT studies, respectively) were 86-118%, with relative repeatability SDs of 3.7-11%, relative reproducibility SDs of 7.8-31.2%, and Horwitz ratio values of 0.5-1.5. Via the ILC studies, we verified the accuracy of UPLC-MS for AR analysis in liver matrices and demonstrated that ILC can be utilized to evaluate performance characteristics of analytical methods.


Anticoagulants , Chemistry Techniques, Analytical , Coumarins , Indans , Rodenticides , Animals , Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/standards , Chemistry Techniques, Analytical/veterinary , Rodenticides/analysis , Anticoagulants/analysis , Liver/chemistry , Liquid Chromatography-Mass Spectrometry , Indans/analysis , Coumarins/analysis , Limit of Detection , Reproducibility of Results
7.
Biotechnol J ; 18(9): e2300143, 2023 Sep.
Article En | MEDLINE | ID: mdl-37222181

A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (µEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step. The entrapped complexes then interact with the chromogenic substrate stored on the detection paper, generating a color change on it, quantified with an open-source smartphone software. This is a universal paper-based technology suitable for high-sensitivity quantification of many analytes, such as proteins or nucleic acids, with different enzyme-linked formats. Here, the potential of the µEL-PAD is demonstrated to detect DNA from Staphylococcus epidermidis. After generation of isothermally amplified genomic DNA from bacteria, Biotin/FITC-labeled products were analyzed with the µEL-PAD, exploiting streptavidin-coated beads and antiFITC-horseradish peroxidase. The µEL-PAD achieved a limit of detection (LOD) and quantification <10 genome copies/µL, these being at least 70- and 1000-fold lower, respectively, than a traditional lateral flow assay (LFA) exploiting immobilized streptavidin and antiFITC-gold nanoparticles. It is envisaged that the device will be a good option for low-cost, simple, quantitative, and sensitive paper-based point-of-care testing.


Chemistry Techniques, Analytical , Microfluidics , Paper , Microfluidics/instrumentation , Collodion/chemistry , Chromogenic Compounds/chemistry , Mobile Applications , Proteins/analysis , Nucleic Acids/analysis , Limit of Detection , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods
8.
Chemosphere ; 323: 138285, 2023 May.
Article En | MEDLINE | ID: mdl-36868424

Anion exchange resin is responsible for removing harmful anionic contaminants in drinking water treatment, but it may become a significant source of precursors for disinfection byproducts (DBPs) by shedding material during application without proper pretreatment. Batch contact experiments were performed to investigate the dissolution of magnetic anion exchange resins and their contribution to organics and DBPs. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) released from the resin were highly correlated with the dissolution conditions (contact time and pH), in which 0.7 mg/L DOC and 0.18 mg/L DON were distributed at exposure time of 2 h and pH 7. The formation potential of four DBPs in the shedding fraction was also revealed that trichloromethane (TCM), dichloroacetonitrile (DCAN), nitrosodimethylamine (NDMA), and dichloroacetamide (DCAcAm) concentrations could reach 21.4, 5.1, 12.1 µg/L, and 69.6 ng/L, respectively. Furthermore, the hydrophobic DOC that preferred to detach from the resin mainly originated from the residues of crosslinkers (divinylbenzene) and porogenic agents (straight-chain alkanes) detected by LC-OCD and GC-MS. Nevertheless, pre-cleaning inhibited the leaching of the resin, among which acid-base and ethanol treatments significantly lowered the concentration of leached organics, and formation potential of DBPs (TCM, DCAN, and DCAcAm) below 5 µg/L and NDMA dropped to 10 ng/L.


Anion Exchange Resins , Chemistry Techniques, Analytical , Water Purification , Anion Exchange Resins/chemistry , Water Purification/instrumentation , Dissolved Organic Matter/analysis , Dissolved Organic Matter/chemistry , Chloroform/analysis , Chloroform/chemistry , Dimethylnitrosamine/analysis , Dimethylnitrosamine/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods
9.
Environ Res ; 216(Pt 4): 114812, 2023 01 01.
Article En | MEDLINE | ID: mdl-36395862

Water quality parameters (WQP) are the most intuitive indicators of the environmental quality of water body. Due to the complexity and variability of the chemical environment of water body, simple and rapid detection of multiple parameters of water quality becomes a difficult task. In this paper, spectral images (named SPIs) and deep learning (DL) techniques were combined to construct an intelligent method for WQP detection. A novel spectroscopic instrument was used to obtain SPIs, which were converted into feature images of water chemistry and then combined with deep convolutional neural networks (CNNs) to train models and predict WQP. The results showed that the method of combining SPIs and DL has high accuracy and stability, and good prediction results with average relative error of each parameter (anions and cations, TOC, TP, TN, NO3--N, NH3-N) at 1.3%, coefficient of determination (R2) of 0.996, root mean square error (RMSE) of 0.1, residual prediction deviation (RPD) of 16.2, and mean absolute error (MAE) of 0.067. The method can achieve rapid and accurate detection of high-dimensional water quality multi-parameters, and has the advantages of simple pre-processing and low cost. It can be applied not only to the intelligent detection of environmental waters, but also has the potential to be applied in chemical, biological and medical fields.


Chemistry Techniques, Analytical , Environmental Monitoring , Water Quality , Neural Networks, Computer , Spectrum Analysis , Environmental Monitoring/methods , Chemistry Techniques, Analytical/methods
10.
Proc Natl Acad Sci U S A ; 119(25): e2123496119, 2022 06 21.
Article En | MEDLINE | ID: mdl-35709322

Aqueous direct air capture (DAC) is a key technology toward a carbon negative infrastructure. Developing sorbent molecules with water and oxygen tolerance and high CO2 binding capacity is therefore highly desired. We analyze the CO2 absorption chemistries on amines, alkoxides, and phenoxides with density functional theory calculations, and perform inverse molecular design of the optimal sorbent. The alkoxides and phenoxides are found to be more suitable for aqueous DAC than amines thanks to their water tolerance (lower pKa prevents protonation by water) and capture stoichiometry of 1:1 (2:1 for amines). All three molecular systems are found to generally obey the same linear scaling relationship (LSR) between [Formula: see text] and [Formula: see text], since both CO2 and proton are bonded to the nucleophilic (alkoxy or amine) binding site through a majorly [Formula: see text] bonding orbital. Several high-performance alkoxides are proposed from the computational screening. Phenoxides have comparatively poorer correlation between [Formula: see text] and [Formula: see text], showing promise for optimization. We apply a genetic algorithm to search the chemical space of substituted phenoxides for the optimal sorbent. Several promising off-LSR candidates are discovered. The most promising one features bulky ortho substituents forcing the CO2 adduct into a perpendicular configuration with respect to the aromatic ring. In this configuration, the phenoxide binds CO2 and a proton using different molecular orbitals, thereby decoupling the [Formula: see text] and [Formula: see text]. The [Formula: see text] trend and off-LSR behaviors are then confirmed by experiments, validating the inverse molecular design framework. This work not only extensively studies the chemistry of the aqueous DAC, but also presents a transferrable computational workflow for understanding and optimization of other functional molecules.


Carbon Dioxide , Chemistry Techniques, Analytical , Oxides , Water , Amines , Carbon Dioxide/chemistry , Chemistry Techniques, Analytical/methods , Oxides/chemistry , Protons , Water/chemistry
11.
Article En | MEDLINE | ID: mdl-35240430

INTRODUCTION: Ferritin is the major iron-storage glycoprotein found in all tissues. Ferritin glycosylation can be assessed by the differential affinities of ferritin glycoforms for Concanavalin A (ConA), a lectin. The fraction of serum ferritin bound to ConA is called "glycosylated ferritin" (GF). Low GF reflects macrophagic activation and is an essential biomarker used in adult-onset Still's disease (AOSD), macrophage activation syndrome (MAS) and Gaucher disease diagnosis and therapeutic management. To date, no complete assay description and method validation according to the ISO 15189 standard has been published. This study aimed to describe and validate our method used for GF measurement and describe GF values observed in patients. MATERIALS AND METHODS: Ferritin glycoforms were separated based on their affinities for ConA using commercially available TRIS-barbital buffer, Sepharose and ConA/Sepharose 4B gels. Ferritin concentrations were measured on the Siemens Dimension Vista 1500®. We analysed 16,843 GF values obtained between 2000 and 2021 from our database of patients. RESULTS: Optimal separation of ferritin glycoforms was obtained by 15-min incubation of serum with ConA/Sepharose at pH 8. The optimized volume were 0.4 mL for total serum ferritin (TSF) 30-1000 µg/L and 0.5 mL for TSF 1000-2500 µg/L. Serum with higher TSF should be pre-diluted in the TRIS-barbital buffer. Reproducibility of ferritin measurement in the TRIS-barbital buffer matrix was excellent (intra-assay CV < 1%; inter-assay CV < 4%). Reproducibility of GF assay was good (intra-assay CV < 10% for low and high ferritin samples, respectively; and inter-assay CV < 10%). Inter-operator variability was 21.6% for GF < 20%. Ferritin was stable for up to 3 days in the TRIS-barbital buffer. An inter-laboratory exchange program conducted with another French hospital showed good agreement between results. In our database, <20% GF levels were scarce, compatible with the low prevalence of Still's disease, MAS, and Gaucher disease. The 95% confidence interval for GF was [26-58]%, lower than values described in the literature for healthy individuals. CONCLUSION: Thanks to good performances, this technique can become readily available for laboratories servicing patients with AOSD, MAS (including severe COVID-19 patients) and Gaucher disease patients.


Chemistry Techniques, Analytical/methods , Concanavalin A/metabolism , Ferritins/blood , Macrophage Activation Syndrome/blood , Still's Disease, Adult-Onset/blood , Biomarkers/blood , Biomarkers/metabolism , Ferritins/metabolism , Gaucher Disease/blood , Gaucher Disease/metabolism , Humans , Macrophage Activation Syndrome/metabolism , Protein Binding , Still's Disease, Adult-Onset/metabolism
12.
Anal Chem ; 94(4): 2305-2312, 2022 02 01.
Article En | MEDLINE | ID: mdl-35067054

This work reports a highly efficient electrogenerated chemiluminescence (ECL) quenching on lipid-coated multifunctional magnetic nanoparticles (MMNP) for the determination of proteases incorporating membrane-confined quenching with a specific cleavage reaction for the first time. A new ruthenium complex [Ru(bpy)2(ddcbpy)](PF6)2 (bpy = 2,2'-bipyridine, ddcbpy = 4,4'-didodecyl-carbonyl-2,2'-bipyridine with two hydrophobic long alkyl chains) was synthesized as a signal probe, while [cholesterol-(CH2)6-HSSKLQK(peptide)-ferrocene (quencher)] was designed as a specific peptide-quencher probe. The MMNP were prepared by inserting both the signal probe and the peptide-quencher probe into the cholesterol-phospholipid-coated Fe3O4 magnetic nanoparticles (Fe3O4 NP, ∼200 nm). When prostate specific antigen (PSA) taken as a model analyte was introduced into the suspension of MMNP, PSA cleaved the amide bond of SK in cholesterol-(CH2)6-HSSKLQK-Fc, and then the cleaved peptide-motif-Fc-quencher was deviated from the MMNP, resulting in the increase in the ECL intensity. It was found that the ECL quenching constant of [Ru(bpy)2(ddcbpy)]2+ on MMNP (KSV, NP/lipECL =2.68 × 107 M-1) is 137-folds higher than that on the lipid-coated electrode (KSV, lipECL=1.95 × 105 M-1) and 391-folds higher than that in the solution (KSV, aqECL =6.86 × 104 M-1). The ECL emission of Ru(bpy)32+ derivative-attached Fe3O4 NP was observed at ∼1.2 V, involving the tunnel-electron transfer pathway (TPA• + Ru(bpy)33+ = Ru(bpy)32+*). Based on the highly efficient ECL quenching of the ruthenium complex by ferrocene on the MMNP, a new ECL method was developed for PSA with a linear range from 0.01 to 1.0 ng/mL and a limit of detection of 3.0 pg/mL. This work demonstrates that the approach of ECL quenching by ferrocene on lipid-coated Fe3O4 NP is promising and could be easily extended to determine other proteases.


Biosensing Techniques , Chemistry Techniques, Analytical , Peptide Hydrolases , Biosensing Techniques/methods , Chemistry Techniques, Analytical/methods , Lipids/chemistry , Luminescence , Luminescent Measurements/methods , Magnetite Nanoparticles , Peptide Hydrolases/analysis
13.
J Biol Chem ; 298(4): 101628, 2022 04.
Article En | MEDLINE | ID: mdl-35074428

Many membrane proteins function as dimers or larger oligomers, including transporters, channels, certain signaling receptors, and adhesion molecules. In some cases, the interactions between individual proteins may be weak and/or dependent on specific lipids, such that detergent solubilization used for biochemical and structural studies disrupts functional oligomerization. Solubilized membrane protein oligomers can be captured in lipid nanodiscs, but this is an inefficient process that can produce stoichiometrically and topologically heterogeneous preparations. Here, we describe a technique to obtain purified homogeneous membrane protein dimers in nanodiscs using a split GFP (sGFP) tether. Complementary sGFP tags associate to tether the coexpressed dimers and control both stoichiometry and orientation within the nanodiscs, as assessed by quantitative Western blotting and negative-stain EM. The sGFP tether confers several advantages over other methods: it is highly stable in solution and in SDS-PAGE, which facilitates screening of dimer expression and purification by fluorescence, and also provides a dimer-specific purification handle for use with GFP nanobody-conjugated resin. We used this method to purify a Frizzled-4 homodimer and a Frizzled-4/low-density lipoprotein receptor-related protein 6 heterodimer in nanodiscs. These examples demonstrate the utility and flexibility of this method, which enables subsequent mechanistic molecular and structural studies of membrane protein pairs.


Chemistry Techniques, Analytical , Membrane Proteins , Nanostructures , Proteins , Chemistry Techniques, Analytical/methods , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nanostructures/chemistry , Protein Multimerization , Proteins/isolation & purification
14.
Plant Sci ; 314: 111090, 2022 Jan.
Article En | MEDLINE | ID: mdl-34895553

In ecological research, quantitative methods are often used to measure the total content of metabolites groups (i.e., phenols, carbohydrates). Until recently, there has been no simple and effective method to determine the total terpenoid content with satisfactory repeatability and sensitivity. The procedure proposed by Ghorai et al. (2012) requires the use of fresh plant material. That may be problematic when experimental units are located far from a laboratory. Our goals were to optimize the procedure, and to find the threshold of misestimation using the procedure adjusted to work with dried material. Needles of Pinus sylvestris were used to test the effect of changes in drying, grinding, storage, and extraction on determined total terpenoid content. All applied changes in material storage and grinding decreased the quantity of the terpenoids in needles. Only air-dried and ball-milled material produced similar results to those obtained with fresh material - can be recommended if the fresh material unattainable. Air-dried material may be stored for up to three months, but it resulted in greater variation and then greater sample size is needed. Lower sample mass and solvent volume have no impact on accuracy. Shorter extraction time, oven-drying or microwaving leads to unreliability of measurements.


Chemistry Techniques, Analytical/methods , Chromatography, High Pressure Liquid/methods , Pinus sylvestris/chemistry , Plant Leaves/chemistry , Terpenes/analysis
15.
Anal Biochem ; 639: 114520, 2022 02 15.
Article En | MEDLINE | ID: mdl-34896376

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without evident protein coding function. They play important regulatory roles in many biological processes, e.g., gene regulation, chromatin remodeling, and cell fate determination during development. Dysregulation of lncRNAs has been observed in various diseases including cancer. Interacting with proteins is a crucial way for lncRNAs to play their biological roles. Therefore, the characterization of lncRNA binding proteins is important to understand their functions and to delineate the underlying molecular mechanism. Large-scale studies based on mass spectrometry have characterized over a thousand new RNA binding proteins without known RNA-binding domains, thus revealing the complexity and diversity of RNA-protein interactions. In addition, several methods have been developed to identify the binding proteins for particular RNAs of interest. Here we review the progress of the RNA-centric methods for the identification of RNA-protein interactions, focusing on the studies involving lncRNAs, and discuss their strengths and limitations.


RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Animals , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Humans , Protein Binding , RNA, Long Noncoding/analysis , RNA-Binding Proteins/analysis
16.
Mikrochim Acta ; 189(1): 34, 2021 12 23.
Article En | MEDLINE | ID: mdl-34940928

DNA is recognized as a powerful biomarker for clinical diagnostics because its specific sequences are closely related to the cause and development of diseases. However, achieving rapid, low-cost, and sensitive detection of short-length target DNA still remains a considerable challenge. Herein, we successfully combine the catalytic hairpin assembly (CHA) technique with capillary action to develop a new and cost-effective method, a target DNA- and pH-responsive DNA hydrogel-based capillary assay, for the naked eye detection of 24 nt short single-stranded target DNA. Upon contact of target DNA, three individual hairpin DNAs hybridize with each other to sufficiently amplify Y-shaped DNA nanostructures (Y-DNA) until they are completely consumed via CHA cycling reactions. Each arm of the resultant Y-DNA contains sticky ends with i-motif DNA structure-forming sequences that can be self-assembled in an acidic environment (pH 5.0) to form target DNA- and pH-responsive DNA hydrogels by means of i-motif DNA-driven crosslinking. When inserting a capillary tube in the resultant solution, the liquid level inside clearly reduces due to the decrease in capillary force induced by the gels. In this way, the developed assay demonstrates sensitive and quantitative detection, with a detection limit of approximately 10 pM of 24 nt short complementary DNA (cDNA) targeting SARS-CoV-2 RNA genes at room temperature within 1 h. The assay is further shown to successfully detect target cDNA in serum, and it is also applied to detect several types of target sequences. Requiring no analytic equipment, precise temperature control, or enzymatic reactions, the developed DNA hydrogel-based capillary assay has potential as a promising naked eye detection platform for target DNA in resource-limited clinical settings.


Chemistry Techniques, Analytical/methods , DNA, Catalytic/chemistry , DNA, Complementary/analysis , Hydrogels/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , Capillary Action , Chemistry Techniques, Analytical/instrumentation , DNA, Catalytic/genetics , DNA, Complementary/genetics , Hydrogen-Ion Concentration , Inverted Repeat Sequences , Limit of Detection , Nucleic Acid Amplification Techniques , Nucleic Acid Hybridization
17.
Front Immunol ; 12: 813082, 2021.
Article En | MEDLINE | ID: mdl-34956244

Siglecs, a family of receptor-like lectins, recognize glycoproteins and/or glycolipids containing sialic acid in the extracellular space and transduce intracellular signaling. Recently, researchers uncovered significant contributions of Siglecs in cancer immunity, renewing interest in this family of proteins. Previous extensive studies have defined how Siglecs recognize glycan epitopes (glycotopes). Nevertheless, the biological role of these glycotopes has not been fully evaluated. Recent studies using live cells have begun unraveling the constituents of Siglec ligands. These studies demonstrated that glycoprotein scaffolds (counter-receptors) displaying glycotopes are sometimes just as important as the glycotope itself. These new insights may guide future efforts to develop therapeutic agents to target the Siglec - ligand axis.


Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/trends , Chromatography, Affinity/methods , Chromatography, Affinity/trends , Ligands , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Humans
18.
Ann Clin Lab Sci ; 51(6): 795-804, 2021 Nov.
Article En | MEDLINE | ID: mdl-34921033

OBJECTIVE: Lipoprotein (a) [Lp(a)] is an LDL-like particle constituted by lipids, apolipoprotein B100 and apolipoprotein (a) [apo(a)], a multidomain glycoprotein whose molecular mass is dependent on the genetically encoded number of Kringle IV type 2 (KIV-2) repeats. Because Lp(a) isoforms have been associated with cardiovascular risk (CVR), we have investigated if their interfacial properties can contribute to distinguish between low and high-risk groups and thus be used as a new CVR indicator. METHODS: Four Lp(a) variants, each carrying a different apo(a) isoform (K20, K24, K25, and K29), were purified from plasma of homozygous donors and their interfacial properties characterized using ellipsometry and surface pressure techniques. RESULTS: Ellipsometry measurements revealed that these isoforms had a similar propensity to form adsorbed layers at hydrophobic-hydrophilic interfaces, but surface pressure enabled to clearly separate them into two groups: K20 and K24 on one side, and K25 and K29 on the other side. CONCLUSION: Though K24 and K25 differ only by a single KIV-2 domain, their sharp difference in surface pressure suggests a critical threshold between the two Lp(a) forms, providing insights into the use of condensed matter approaches to monitor CVR. Our findings may represent a new laboratory window to assist medical decisions and to develop precision medicine treatments, practices, and products for CVR, which can be extended to other cardiovascular disease conditions.


Cardiovascular Diseases , Lipoprotein(a) , Protein Isoforms , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Chemistry Techniques, Analytical/methods , Heart Disease Risk Factors , Humans , Hydrophobic and Hydrophilic Interactions , Kringles/physiology , Lipid Metabolism , Lipoprotein(a)/chemistry , Lipoprotein(a)/metabolism , Precision Medicine/methods , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/isolation & purification , Surface Properties
19.
Mikrochim Acta ; 188(12): 424, 2021 11 22.
Article En | MEDLINE | ID: mdl-34811580

The presence of excess L-amino acid in the Murchison meteorite, circular polarization effect in the genesis of stars and existence of chirality in interstellar molecules contribute to the origin of life on earth. Chiral-sensitive techniques have been employed to untangle the secret of the symmetries of the universe, designing of effective secure drugs and investigation of chiral biomolecules. The relationship between light and chiral molecules was employed to probe and explore such molecules using spectroscopy techniques. The mutual interaction between electromagnetic spectrum and chirality of matter give rise to distinct optical response, which advances vital information contents in chiroptical spectroscopy. Chiral plasmonic gold nanoparticle exhibits distinctive circular dichroism peaks in broad wavelength range thereby crossing the limits of its characterization. The emergence of strong optical activity of gold nanosystem is related to its high polarizability, resulting in plasmonic and excitonic effects on incident photons. Inspired by the development of advanced chiral plasmonic nanomaterials and exploring its properties, this review gives an overview of various chiral gold nanostructures and the mechanism behind its chiroptical properties. Finally, we highlight the application of different chiral gold nanomaterials in the field of catalysis and medical applications with special emphasis to biosensing and biodetection.


Chemistry Techniques, Analytical/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry
20.
Eur J Pharm Biopharm ; 169: 97-102, 2021 Dec.
Article En | MEDLINE | ID: mdl-34597817

Biopharmaceutical product characterization benefits from the quantification and differentiation of unwanted protein aggregates and silicone oil droplets to support risk assessment and control strategies as part of the development. Flow imaging microscopy is successfully applied to differentiate the two impurities in the size range larger than about 5 µm based on their morphological appearance. In our study we applied the combination of oil-immersion flow imaging microscopy and convolutional neural networks to extend the size range below 5 µm. It allowed to differentiate and quantify heat stressed therapeutic monoclonal antibody aggregates from artificially generated silicone oil droplets with misclassification rates of about 10% in the size range between 0.3 and 5 µm. By comparing the misclassifications across the tested size range, particles in the low submicron size range were particularly difficult to differentiate as their morphological appearance becomes very similar.


Antibodies, Monoclonal/pharmacology , Chemistry Techniques, Analytical/methods , Protein Aggregates , Silicone Oils/chemistry , Biological Products/pharmacology , Biological Products/standards , Humans , Immersion , Liposomes , Machine Learning , Microscopy/methods , Neural Networks, Computer , Particle Size
...