Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 78(2): 211-216, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374573

RESUMEN

BACKGROUND: Food protein-induced allergic proctocolitis (FPIAP) is a nonimmunoglobulin (IgE)-mediated food hypersensitivity and the exact mechanisms that cause FPIAP are unknown. Chemokines play crucial roles in the development of allergic diseases. OBJECTIVE: To examine serum levels of a group of chemokines in infants with FPIAP. METHODS: In 67 infants with FPIAP and 65 healthy infants, we measured serum levels of mucosa-associated epithelial chemokine (MEC/CCL28), thymus-expressed chemokine (TECK/CCL25), CX3CL1 and macrophage inflammatory protein (MIP)-3a/CCL20. RESULTS: Infants with FPIAP had a lower median value of MIP3a/CCL20 than healthy infants [0.7 (0-222) vs. 4 (0-249) pg/mL, respectively] (p < 0.001). Infants with MIP3a/CCL20 levels ≤0.95 pg/mL have 13.93 times more risk of developing FPIAP than infants with MIP3a/CCL20 levels >0.95 pg/mL. Serum MEC/CCL28, TECK/CCL25, and CX3CL1 levels were similar between the infants with FPIAP and the control group. CONCLUSION: MIP3a/CCL20 serum levels were reduced in infants with FPIAP compared with healthy controls. Whether this finding has a role in pathogenesis remains to be determined.


Asunto(s)
Quimiocina CCL20 , Hipersensibilidad a los Alimentos , Proctocolitis , Humanos , Lactante , Hipersensibilidad a los Alimentos/complicaciones , Proteínas Inflamatorias de Macrófagos , Membrana Mucosa , Quimiocina CCL20/sangre , Quimiocina CCL20/química
2.
Nat Commun ; 11(1): 3031, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541785

RESUMEN

Chemokines are important protein-signaling molecules that regulate various immune responses by activating chemokine receptors which belong to the G protein-coupled receptor (GPCR) superfamily. Despite the substantial progression of our structural understanding of GPCR activation by small molecule and peptide agonists, the molecular mechanism of GPCR activation by protein agonists remains unclear. Here, we present a 3.3-Å cryo-electron microscopy structure of the human chemokine receptor CCR6 bound to its endogenous ligand CCL20 and an engineered Go. CCL20 binds in a shallow extracellular pocket, making limited contact with the core 7-transmembrane (TM) bundle. The structure suggests that this mode of binding induces allosterically a rearrangement of a noncanonical toggle switch and the opening of the intracellular crevice for G protein coupling. Our results demonstrate that GPCR activation by a protein agonist does not always require substantial interactions between ligand and the 7TM core region.


Asunto(s)
Quimiocina CCL20/metabolismo , Receptores CCR6/química , Receptores CCR6/metabolismo , Quimiocina CCL20/química , Quimiocina CCL20/genética , Microscopía por Crioelectrón , Humanos , Ligandos , Unión Proteica , Receptores CCR6/genética , Receptores Acoplados a Proteínas G , Transducción de Señal
3.
J Leukoc Biol ; 107(6): 1137-1154, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32533638

RESUMEN

The chemokine CCL20 is broadly produced by endothelial cells in the liver, the lung, in lymph nodes and mucosal lymphoid tissues, and recruits CCR6 expressing leukocytes, particularly dendritic cells, mature B cells, and subpopulations of T cells. How CCL20 is systemically scavenged is currently unknown. Here, we identify that fluorescently labeled human and mouse CCL20 are efficiently taken-up by the atypical chemokine receptor ACKR4. CCL20 shares ACKR4 with the homeostatic chemokines CCL19, CCL21, and CCL25, although with a lower affinity. We demonstrate that all 4 human chemokines recruit ß-arrestin1 and ß-arrestin2 to human ACKR4. Similarly, mouse CCL19, CCL21, and CCL25 equally activate the human receptor. Interestingly, at the same chemokine concentration, mouse CCL20 did not recruit ß-arrestins to human ACKR4. Further cross-species analysis suggests that human ACKR4 preferentially takes-up human CCL20, whereas mouse ACKR4 similarly internalizes mouse and human CCL20. Furthermore, we engineered a fluorescently labeled chimeric chemokine consisting of the N-terminus of mouse CCL25 and the body of mouse CCL19, termed CCL25_19, which interacts with and is taken-up by human and mouse ACKR4.


Asunto(s)
Quimiocina CCL19/metabolismo , Quimiocina CCL20/metabolismo , Quimiocina CCL21/metabolismo , Quimiocinas CC/metabolismo , Receptores CCR/metabolismo , beta-Arrestinas/genética , Secuencia de Aminoácidos , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Sitios de Unión , Línea Celular , Quimiocina CCL19/química , Quimiocina CCL19/genética , Quimiocina CCL20/química , Quimiocina CCL20/genética , Quimiocina CCL21/química , Quimiocina CCL21/genética , Quimiocinas CC/química , Quimiocinas CC/genética , Células HEK293 , Células HeLa , Humanos , Ligandos , Ratones , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Receptores CCR/química , Receptores CCR/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transfección , beta-Arrestinas/metabolismo
4.
J Leukoc Biol ; 104(2): 423-434, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30114340

RESUMEN

Chemokine-chemokine receptor (CKR) interactions are traditionally described by a two-step/two-site mechanism that details the major contact points between chemokine ligands and CKRs leading to ligand recognition and receptor activation. Chemokine recognition site 1 (CRS1) encompasses interactions between the CKR N-terminus and the globular chemokine core. Chemokine recognition site 2 (CRS2) includes interactions between the unstructured chemokine N-terminus and the binding pocket of the receptor. The two-step/two-site paradigm has been an adequate framework to study the intricacies of chemokine:CKR interactions, but emerging studies highlight the limitations of this model. Here, we present studies of CRS2 interactions between the chemokine CCL20 and its cognate receptor CCR6 driven by the hypothesis that CCL20 interacts with CCR6 as described by the two-step/two-site model. CCL20 is a chemokine with an unusually short N-terminus of 5 residues (NH2 -ASNFD), compared to the average length of 10 residues for chemokine ligands. We have investigated how well CCL20 tolerates manipulation of the N-terminus by monitoring binding affinity of variants and their ability to activate the receptor. We show the CCL20 N-terminus tolerates truncation of up to 3 residues, extension by up to 5 additional residues, and point mutations at 4 of 5 positions with minimal loss of binding affinity and minimal impairment in ability to stimulate calcium mobilization, inositol triphosphate accumulation, chemotaxis, and ß-arrestin-2 recruitment. Mutation of the fifth residue, aspartate, to alanine or lysine has a dramatic impact on binding affinity for CCR6 and ligand potency. We postulate CCL20 does not activate CCR6 through the canonical two-step/two-site mechanism of CKR activation.


Asunto(s)
Quimiocina CCL20/química , Quimiocina CCL20/metabolismo , Receptores CCR6/metabolismo , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Células Jurkat , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
J Neuroinflammation ; 13(1): 162, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27334337

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a severe traumatic injury that often leads to paralysis. The neuroinflammation following SCI plays an important role during the secondary injury phase. C-C motif chemokine ligand 20 (CCL20) works like a magnet to attract inflammatory cells and subsequently regulate inflammation. However, the role and mechanisms of CCL20 in neuroinflammation following traumatic injury are poorly understood. METHODS: A modified Allen's weight drop method was applied to induce a rat moderate contusion injury model. HE staining was used to assess spinal cord histopathology, and the water content test was used to estimate spinal cord edema. Motor function scores were quantified to evaluate locomotor ability, and leukocyte infiltration was observed by CD45 immunofluorescence and flow cytometry. Additionally, qRT-PCR and ELISA were used to determine inflammatory mediator gene expression. Th17 cell recruitment was identified by flow cytometry. RESULTS: Compared with the injury control groups, histological analysis of the lesion area and tissue edema revealed reduced spinal cord edema and decreased lesion volume in the group administrated with CCL20 neutralizing antibody. Locomotor activity, as assessed by Basso, Beattie, and Bresnahan (BBB) score, showed that CCL20 blockade was beneficial for motor function recovery. Results also showed that leukocyte infiltration was reduced by neutralizing CCL20 at 7 days post-injury. More importantly, expression levels of IL-1ß, IL-6, and TNF-α at 24 h after SCI demonstrated that a reduced inflammatory reaction in the CCL20 antibody group compared with the injury controls. Although CCL20 altered the expression of IL-1ß, IL-6, and TNF-α, it had no effect on anti-inflammatory IL-10 expression at 24 h after damage. Notably, tissue flow cytometry confirmed that Th17 cell recruitment in the CCL20 antibody group was decreased compared with the control groups at 14 days post-injury. Additionally, IL-17A expression, which is mainly secreted by Th17 cell, suggested that CCL20 blockade also reduced IL-17A levels at 14 days after SCI. CONCLUSIONS: These results suggested that CCL20 aggravates neuroinflammation following SCI via regulation of Th17 cell recruitment and IL-17A level. Thus, CCL20-target therapy could be a promising clinical application for the treatment of SCI.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Quimiocina CCL20/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Traumatismos de la Médula Espinal/complicaciones , Animales , Anticuerpos Monoclonales/farmacología , Quimiocina CCL20/química , Quimiocina CCL20/inmunología , Modelos Animales de Enfermedad , Edema/etiología , Citometría de Flujo , Interleucina-17/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/patología , Ligandos , Locomoción/efectos de los fármacos , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Células Th17/efectos de los fármacos , Células Th17/patología , Factores de Tiempo
6.
Acta Biomater ; 38: 59-68, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27109762

RESUMEN

UNLABELLED: In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. STATEMENT OF SIGNIFICANCE: Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications.


Asunto(s)
Quimiocina CCL20 , Diabetes Mellitus Experimental/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Gelatina , Hidrogeles , Interleucina-8 , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Quimiocina CCL20/química , Quimiocina CCL20/farmacología , Gelatina/química , Gelatina/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Interleucina-8/química , Interleucina-8/farmacología , Ratones , Ratones Endogámicos ICR
7.
Fish Shellfish Immunol ; 47(1): 280-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26384847

RESUMEN

CCR6 have been demonstrated playing an important role in immune cells homing to mucosal tissues, mediating antigen presentation and immune response in mammals. CCR6 in lower vertebrate leukocyte homing has not yet been revealed. Cryptocaryon irritans is believed to be a good pathogen model for skin and gill mucosal immunity. In this study, we identified two CCR6s and their three possible ligands CCL20 like cDNA sequences, designated as grouper EcCCR6A, EcCCR6B, EcCCL20L1, EcCCL20L2 and EcCCL20L3. It is interesting to find that EcCCR6A has a longer second extracellular loop than EcCCR6B, which is more similar to mammalian CCR6. Tissue distribution analysis showed that EcCCR6A pronouncedly dominates in gill and brain while EcCCR6B dominates in head kidney, trunk kidney and thymus. Three chemokine ligands have their own distinct expression pattern in health grouper tissues. EcCCL20L1 dominates in spleen and head kidney, EcCCL20L2 dominates in gill and thymus, whereas EcCCL20L3 dominates in skin and brain. The expression patterns of these chemokines and chemokine receptors were detected in C. irritans infected grouper and the results showed that EcCCR6A, EcCCR6B and EcCCL20L1 were significantly up-regulated in the skin of C. irritans infected fish, which indicated these two chemokine receptors and their ligand may play important role in immune cells' homing to skin mucosal immune tissues under pathogen caused inflammation.


Asunto(s)
Lubina , Quimiocina CCL20/genética , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Inmunidad Mucosa , Receptores CCR6/genética , Secuencia de Aminoácidos , Animales , Quimiocina CCL20/química , Quimiocina CCL20/metabolismo , Cilióforos/fisiología , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Ligandos , Especificidad de Órganos , Filogenia , Receptores CCR6/química , Receptores CCR6/metabolismo , Alineación de Secuencia/veterinaria
8.
Cytokine ; 72(1): 97-101, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25585877

RESUMEN

Chemokines and their receptors are vital for the trafficking of immune cells. In an orchestrated fashion, up- and down-regulation of chemokines and their receptors contribute to both immune system homeostasis as well as inflammation. The CC chemokine, CCL20 and its cognate receptor, CCR6, are described as one of the few chemokine-receptor pairs that show exclusivity. In our review, we analyze observations which indicate that CCR6 does not have CCL20 as an exclusive ligand as once appreciated. For example, attempts to study the pair, utilizing mainly CCR6-deficient mice, are confounded by a family of non-chemokine ligands known as ß-defensins that can bind to CCR6 and potentially can activate the cell. Therefore, a review of the activities of other potential binding partners of CCR6 is essential for interpretation of the current literature on this matter and for an understanding of their involvement in basic immunology and pathology.


Asunto(s)
Quimiocina CCL20/metabolismo , Receptores CCR6/metabolismo , beta-Defensinas/metabolismo , Animales , Quimiocina CCL20/química , Quimiocina CCL20/genética , Quimiocina CCL20/inmunología , Regulación hacia Abajo , Humanos , Ligandos , Ratones , Ratones Noqueados , Modelos Moleculares , Receptores CCR6/química , Receptores CCR6/genética , Regulación hacia Arriba , beta-Defensinas/inmunología
9.
Cytokine ; 61(3): 924-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23360828

RESUMEN

CCL20 is currently the only known chemokine ligand for the receptor CCR6, and is a mucosal chemokine involved in normal and pathological immune responses. Although nucleotide sequence data are available for ccl20 and ccr6 sequences from multiple species, the ferret ccl20 and ccr6 sequences have not been determined. To increase our understanding of immune function in ferret models of infection and vaccination, we have used RT-PCR to obtain the ferret ccl20 and ccr6 cDNA sequences and functionally characterize the encoded proteins. The open reading frames of both genes were highly conserved across species and mostly closely related to canine sequences. For functional analyses, single cell clones expressing ferret CCR6 were generated, a ferret CCL20/mouse IgG(2a) fusion protein (fCCL20-mIgG(2a)) was produced, and fCCL20 was chemically synthesized. Cell clones expressing ferret CCR6 responded chemotactically to fCCL20-mIgG2a fusion protein and synthetic ferret CCL20. Chemotaxis inhibition studies identified the polyphenol epigallocatechin-3-gallate and the murine γ-herpesvirus 68 M3 protein as inhibitors of fCCL20. Surface plasmon resonance studies revealed that EGCG bound directly to fCCL20. These results provide molecular characterization of previously unreported ferret immune gene sequences and for the first time identify a broad-spectrum small molecule inhibitor of CCL20 and reveal CCL20 as a target for the herpesviral M3 protein.


Asunto(s)
Quimiocina CCL20/metabolismo , Quimiotaxis , Hurones/metabolismo , Receptores CCR6/metabolismo , Secuencia de Aminoácidos , Animales , Catequina/análogos & derivados , Catequina/farmacología , Quimiocina CCL20/química , Quimiotaxis/efectos de los fármacos , Clonación Molecular , ADN Complementario/genética , Perros , Ratones , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Unión Proteica/efectos de los fármacos , Receptores CCR6/química , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas Virales/farmacología
10.
Antimicrob Agents Chemother ; 52(3): 883-94, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18086840

RESUMEN

Human macrophage inflammatory protein 3alpha (MIP-3alpha), also known as CCL20, is a 70-amino-acid chemokine which exclusively binds to chemokine receptor 6. In addition, the protein also has direct antimicrobial, antifungal, and antiviral activities. The solution structure of MIP-3alpha was solved by the use of two-dimensional homonuclear proton nuclear magnetic resonance (NMR). The structure reveals the characteristic chemokine fold, with three antiparallel beta strands followed by a C-terminal alpha helix. In contrast to the crystal structures of MIP-3alpha, the solution structure was found to be monomeric. Another difference between the NMR and crystal structures lies in the angle of the alpha helix with respect to the beta strands, which measure 69 and approximately 56.5 degrees in the two structures, respectively. NMR diffusion and pH titration studies revealed a distinct tendency for MIP-3alpha to form dimers at neutral pH and monomers at lower pH, dependent on the protonation state of His40. Molecular dynamics simulations of both the monomeric and the dimeric forms of MIP-3alpha supported the notion that the chemokine undergoes a change in helix angle upon dimerization and also highlighted the important hydrophobic and hydrogen bonding contacts made by His40 in the dimer interface. Moreover, a constrained N terminus and a smaller binding groove were observed in dimeric MIP-3alpha simulations, which could explain why monomeric MIP-3alpha may be more adept at receptor binding and activation. The solution structure of a synthetic peptide consisting of the last 20 residues of MIP-3alpha displayed a highly amphipathic alpha helix, reminiscent of various antimicrobial peptides. Antimicrobial assays with this peptide revealed strong and moderate bactericidal activities against Escherichia coli and Staphylococcus aureus, respectively. This confirms that the C-terminal alpha-helical region of MIP-3alpha plays a significant part in its broad anti-infective activity.


Asunto(s)
Quimiocina CCL20 , Espectroscopía de Resonancia Magnética/métodos , Quimiocina CCL20/química , Quimiocina CCL20/metabolismo , Quimiocina CCL20/farmacología , Cristalización , Dimerización , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Protones , Soluciones/química , Soluciones/metabolismo , Soluciones/farmacología , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...