Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 525
1.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730482

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Chemokine CCL3 , Gastric Mucosa , Helicobacter Infections , Helicobacter pylori , Macrophages , Helicobacter pylori/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Animals , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastric Mucosa/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Homeostasis , Mice, Inbred C57BL , Humans , Apoptosis , Cell Proliferation , Male , RAW 264.7 Cells
2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674048

Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.


Anti-Inflammatory Agents , Lipopolysaccharides , Microglia , Microglia/drug effects , Microglia/metabolism , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Cell Line , Peptoids/pharmacology , Peptoids/chemistry , Interleukin-6/metabolism , NF-kappa B/metabolism , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Peptides/pharmacology , Peptides/chemistry , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL2/metabolism , Cytokines/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry
3.
J Exp Med ; 221(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38661718

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Cell Communication , Chemokine CCL3 , Killer Cells, Natural , Muromegalovirus , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Muromegalovirus/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Genes, Reporter , Mice, Inbred C57BL , Herpesviridae Infections/immunology , Herpesviridae Infections/genetics , Mice, Transgenic , Interferon Type I/metabolism , Signal Transduction
4.
Cancer Immunol Res ; 12(5): 514, 2024 May 02.
Article En | MEDLINE | ID: mdl-38568780

Patients with gliomas often experience mental health problems, such as depression and anxiety, that lead to worsening tumor progression and shortened survival. In this issue, Wang and colleagues report a novel mechanism underlying this, finding that chronic stress reduces secretion of the chemokine CCL3, which leads to an immunosuppressive glioma microenvironment. CCL3 administration enhances the infiltration of antitumor immune cells, providing rationale for a potential new therapeutic approach. See related article by Wang et al., p. 516 (4).


Chemokine CCL3 , Glioma , Tumor Microenvironment , Glioma/immunology , Glioma/pathology , Glioma/metabolism , Humans , Tumor Microenvironment/immunology , Chemokine CCL3/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Animals
5.
Cancer Immunol Res ; 12(5): 516-529, 2024 May 02.
Article En | MEDLINE | ID: mdl-38437646

As understanding of cancer has deepened, increasing attention has been turned to the roles of psychological factors, especially chronic stress-induced depression, in the occurrence and development of tumors. However, whether and how depression affects the progression of gliomas are still unclear. In this study, we have revealed that chronic stress inhibited the recruitment of tumor-associated macrophages (TAM) and other immune cells, especially M1-type TAMs and CD8+ T cells, and decreased the level of proinflammatory cytokines in gliomas, leading to an immunosuppressive microenvironment and glioma progression. Mechanistically, by promoting the secretion of stress hormones, chronic stress inhibited the secretion of the chemokine CCL3 and the recruitment of M1-type TAMs in gliomas. Intratumoral administration of CCL3 reprogrammed the immune microenvironment of gliomas and abolished the progression of gliomas induced by chronic stress. Moreover, levels of CCL3 and M1-type TAMs were decreased in the tumor tissues of glioma patients with depression, and CCL3 administration enhanced the antitumor effect of anti-PD-1 therapy in orthotopic models of gliomas undergoing chronic stress. In conclusion, our study has revealed that chronic stress exacerbates the immunosuppressive microenvironment and progression of gliomas by reducing the secretion of CCL3. CCL3 alone or in combination with an anti-PD-1 may be an effective immunotherapy for the treatment of gliomas with depression. See related Spotlight by Cui and Kang, p. 514.


Chemokine CCL3 , Disease Progression , Glioma , Tumor Microenvironment , Glioma/immunology , Glioma/metabolism , Glioma/pathology , Glioma/drug therapy , Tumor Microenvironment/immunology , Animals , Mice , Humans , Chemokine CCL3/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Male , Cell Line, Tumor , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Stress, Psychological/immunology , Stress, Psychological/complications , Mice, Inbred C57BL
6.
Acta Haematol ; 146(4): 277-286, 2023.
Article En | MEDLINE | ID: mdl-37015191

INTRODUCTION: Both microenvironmental signals from surrounding cells and changes in the genome of leukemic cells play essential role in the development of chronic lymphocytic leukemia. Nurse-like cells (NLCs) are one of the important elements of the microenvironment of CLL cells. The key role in the interactions of leukemic cells with NLCs is played by chemokines, which may interfere with the programmed cell death process in the leukemic lymphocytes. The aim of our study was analysis of selected microenvironmental factors having a potential impact on the leukemic cells survival, as well as their association with clinical, cytogenetic, and molecular parameters. For this study, we selected three types of molecules which can modulate microenvironment: chemokines IL-8 and CCL3 (which are classically secreted to extracellular matrix), soluble forms of adhesion molecules JAG1 and CD163, and secreted form of endogenous protein BIRC5. We assessed their expression in the serum of CLL patients as well as in medium of long-term NLCs cultures. METHODS: Long-term cell culture was prepared from mononuclear cells derived from the blood of 34 patients with CLL. Number of NLCs cells was evaluated, under a light inverted microscope. The concentration of IL-8, CCL3, sBIRC5, sCD163, and sJAG1 in culture medium and serum was assessed by enzyme-linked immunosorbent assays. RESULTS: There were significant differences in the concentration of IL-8, sBIRC5, CCL3, sCD163, and sJAG1 between the patient's blood serum and the culture medium. The concentrations of IL-8, CCL3, and JAG1 were higher in the culture medium, which confirmed the role of the microenvironment in the production of these proteins. In addition, the concentration of CCL3 chemokine in both patient's blood serum and in the culture medium correlated with the number of NLCs and with known prognostic factors in the course of CLL, e.g., Rai stage, WBC, expression of ZAP-70, CD38, and CD5/19. CONCLUSION: The microenvironment of CLL cells, which includes NLCs, plays an important role in the pathogenesis of CLL. The CCL3 chemokine seems to be a good factor representing microenvironment of CLL cells. Chronic lymphocytic leukemia is a complex and very heterogeneous disease; therefore, its progress should be considered both in the context of genetic changes and the interaction with microenvironmental cells.


Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Chemokine CCL3/genetics , Chemokine CCL3/metabolism , Enzyme-Linked Immunosorbent Assay , Interleukin-8 , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Prognosis , Tumor Microenvironment/genetics
7.
Infect Immun ; 91(4): e0001423, 2023 04 18.
Article En | MEDLINE | ID: mdl-36880752

Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.


Osteomyelitis , Staphylococcal Infections , Animals , Mice , Staphylococcus aureus/metabolism , Neutrophils/metabolism , Chemokines/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Osteoblasts , Interleukin-8/metabolism , Staphylococcal Infections/microbiology , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Chemokine CCL7/metabolism , Chemokine CCL3/metabolism
8.
Drug Des Devel Ther ; 17: 297-312, 2023.
Article En | MEDLINE | ID: mdl-36756190

Purpose: Sichen (SC) formula is a classic prescription of Tibetan medicine. Due to its potential anti-inflammatory effect, the SC formula has been clinically used to treat respiratory diseases for many years in the Chinese Tibet region. The present study aimed to investigate the anti-inflammatory effect of SC and explore the underlying mechanisms. Methods: SC formula was characterized by HPLC analysis. The acute lung injury (ALI) mouse model was induced by direct intratracheal lipopolysaccharide (LPS) instillation, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. Meanwhile, RAW264.7 macrophages were stimulated by LPS. The contents of inflammatory mediators in the culture medium were determined by ELISA. Protein levels were determined by immunohistochemical staining or Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was performed using immunofluorescence and Western blotting. Results: In the LPS-induced ALI mouse model, SC treatment suppressed the secretion of inflammatory mediators (TNF-α, IL-6, IL-1ß, MCP-1, MIP-1α, and RANTES) in BALF. SC treatment hindered the recruitment of macrophages. SC treatment also inhibited the expression of CD68, p-p65, and TLR4 in the lung tissue. In the LPS-exposed RAW264.7 cells, the cell viability was not changed up to 400 µg/mL of SC. SC concentration-dependently suppressed the production of nitric oxide, prostaglandin E2, TNF-α, IL-6, MCP-1, MIP-1α, and RANTES in LPS-challenged RAW264.7 cells. The expression levels of iNOS, COX-2, p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/ß, p-IκB, p-p65, p-c-Jun, and p-IRF3 were decreased after SC treatment. Moreover, the nuclear translocation of p65, c-Jun, and IRF3 was also blocked by SC treatment. Conclusion: SC treatment inhibited the inflammatory responses in LPS-induced ALI mouse model/RAW264.7 macrophages. The underlying mechanism of this action may be closely associated with the suppression of TLR4 signaling pathways. These research findings provide further pharmacological justifications for the medicinal use of SC in the management of respiratory diseases.


Acute Lung Injury , Toll-Like Receptor 4 , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/therapeutic use , Chemokine CCL3/metabolism , Interleukin-6 , Lipopolysaccharides , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Medicine, Tibetan Traditional
9.
Ocul Immunol Inflamm ; 31(4): 701-709, 2023 May.
Article En | MEDLINE | ID: mdl-35404738

PURPOSE: To analyze and compare the tear immunological profile in ocular GVHD (oGVHD) patients with that in non-oGVHD patients and to correlate them with ocular surface parameters based on the International Chronic Ocular GVHD Consensus Group (ICCGVHD) diagnostic criteria. METHODS: Tear samples from 20 individuals who underwent allo-hematopoietic stem cell transplantation and were grouped according the presence or absence of oGVHD were analyzed using Bio-Plex assay. RESULTS: IL-8 and MIP-1α levels were significantly higher in tears from oGVHD patients compared with those in tears from non-oGVHD patients (p<0.001 and p=0.001, respectively). Tear IL-8 levels correlated significantly with OSDI criteria (ρ=0.5159, p=0.001), ocular hyperemia (ρ=0.469, p=0.002), and corneal staining (ρ=0.339, p=0.032), whereas tear Mip-1α levels correlated with OSDI score (ρ=0.358, p=0.023). CONCLUSION: We demonstrated higher tear levels of IL-8 and MIP-1α in oGVHD patients and significant correlations between theses cytokines and ocular surface parameters based on the ICCGVHDCG criteria.


Dry Eye Syndromes , Graft vs Host Disease , Humans , Chemokine CCL3/metabolism , Interleukin-8/metabolism , Eye , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology , Dry Eye Syndromes/metabolism , Tears/metabolism , Graft vs Host Disease/diagnosis
10.
Epilepsy Behav ; 137(Pt A): 108962, 2022 12.
Article En | MEDLINE | ID: mdl-36356419

Neuroinflammation plays a protective role in the brain; however, in neurological diseases such as epilepsy, overactivated neuroinflammation, along with overexpression of inflammatory mediators, can cause neuronal tissue damage, which can trigger seizures due to loss of ionic or neurotransmitter homeostasis. Therefore, we aimed to evaluate mRNA expression levels of proinflammatory cytokines, early growth response factor 3 (Egr3), and GABA A receptors in the hippocampus of naive audiogenic mutant tremor mice, and stimulated tremor mice after a seizure. Gene expression of Il-1ß, Il-6, Tnf-α, Ccl2, Ccl3, Egr3, Gabra1, and Gabra4 from hippocampal samples of naive and stimulated tremor mice were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Relative to resistant mice, Ccl3 gene expression was increased and Il6 was decreased in the hippocampus of naïve tremor mice. Thirty minutes after a seizure, Ccl3 and Il-1ß mRNA expression were decreased (p < 0.0001; p = 0.0034, respectively) while Il6 was increased (p = 0.0052) in stimulated tremor mice, relative to naïve animals. In addition, Egr3, Gabra1, and Gabra4 mRNA expression was decreased in the hippocampus of naive tremor mice, relative to resistant mice, which increased 30 minutes after a seizure (p = 0.0496; p = 0.0447, and p = 0.0011, respectively), relative to naïve animals. In conclusion, overexpression of Ccl3 in the hippocampus of naive tremor mice, followed by downregulation soon after seizure in stimulated tremor mice, could be involved in changes in the blood-brain barrier (BBB) permeability in epilepsy. Il-1ß may be involved in hippocampal downregulation of GABA A receptors of naive tremor mice, characterizing an important mechanism in audiogenic seizures triggering. Hippocampal alterations of proinflammatory cytokines, Egr3, and GABA A receptors in tremor mice reinforce them as an alternative tool to modeling temporal lobe epilepsy.


Epilepsy, Reflex , Receptors, GABA-A , Mice , Animals , Receptors, GABA-A/metabolism , Tremor/metabolism , Seizures/genetics , Hippocampus/metabolism , Epilepsy, Reflex/genetics , RNA, Messenger , Chemokine CCL3/genetics , Chemokine CCL3/metabolism
11.
Cells ; 11(19)2022 09 30.
Article En | MEDLINE | ID: mdl-36231038

Studies on natural products that can alleviate the inflammatory response of macrophages caused by endotoxin (lipopolysaccharide) continue. This study investigated the anti-inflammatory activity of baicalin related to macrophage activation caused by lipopolysaccharide (LPS). Baicalin is a flavone glycoside found in plants such as Scutellaria baicalensis and Scutellaria lateriflora belonging to the genus Scutellaria. The multiplex cytokine assay (MCA), Griess reagent assay, fluo-4 calcium assay, dihydrorhodamine 123 (DHR123) assay, quantitative RT-PCR, and flow cytometry were performed using RAW 264.7 mouse macrophages. The MCA revealed that baicalin significantly decreased the production of interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein (MIP)-1α, MIP-1ß, MIP-2, and RANTES in LPS-stimulated RAW 264.7 macrophages at concentrations of 10, 25, and 50 µM. The DHR123 assay showed that baicalin significantly inhibited reactive oxygen species generation in LPS-stimulated RAW 264.7 macrophages. Flow cytometry revealed that baicalin significantly reduced the levels of phosphorylated p38 MAPK and Fas in LPS-stimulated RAW 264.7 macrophages. Baicalin also inhibited the mRNA expression levels of inflammatory genes such as Chop, Fas, Nos2, Ptgs2, Stat1, c-Jun, c-Fos, and At1a. The IC50 values of baicalin for IL-6, TNF-α, G-CSF, VEGF, interferon gamma-induced protein 10 (IP-10), leukemia inhibitory factor (LIF), lipopolysaccharide-induced CXC chemokine (LIX), MIP-1α, MIP-1ß, MIP-2, RANTES, nitric oxide, intracellular calcium, and hydrogen peroxide were 591.3, 450, 1719, 27.68, 369.4, 256.6, 230.7, 856.9, 1326, 1524, 378.1, 26.76, 345.1, and 32.95 µM, respectively. Baicalin modulated the inflammatory response of macrophages activated by LPS via the calcium-CHOP pathway.


Biological Products , Flavones , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Biological Products/metabolism , Calcium/metabolism , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Cyclooxygenase 2/metabolism , Flavonoids , Glycosides , Granulocyte Colony-Stimulating Factor , Hydrogen Peroxide/metabolism , Interferon-gamma/metabolism , Interleukin-6/metabolism , Leukemia Inhibitory Factor/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Front Immunol ; 13: 940577, 2022.
Article En | MEDLINE | ID: mdl-36248873

Background: Aging is usually accompanied by functional declines of the immune system, especially in T-cell responses. However, little is known about ways to alleviate this. Methods: Here, 37 middle-aged healthy participants were recruited, among which 32 were intravenously administrated with expanded NK cells and 5 with normal saline. Then, we monitored changes of peripheral senescent and exhausted T cells within 4 weeks after infusion by flow cytometry, as well as serum levels of senescence-associated secretory phenotype (SASP)-related factors. In vitro co-culture assays were performed to study NK-mediated cytotoxic activity against senescent or exhausted T cells. Functional and phenotypic alteration of NK cells before and after expansion was finally characterized. Results: After NK cell infusion, senescent CD28-, CD57+, CD28-CD57+, and CD28-KLRG1+ CD4+ and CD8+ T-cell populations decreased significantly, so did PD-1+ and TIM-3+ T cells. These changes were continuously observed for 4 weeks. Nevertheless, no significant changes were observed in the normal saline group. Moreover, SASP-related factors including IL-6, IL-8, IL-1α, IL-17, MIP-1α, MIP-1ß, and MMP1 were significantly decreased after NK cell infusion. Further co-culture assays showed that expanded NK cells specifically and dramatically eliminated senescent CD4+ T cells other than CD28+CD4+ T cells. They also showed improved cytotoxic activity, with different expression patterns of activating and inhibitory receptors including NKG2C, NKG2A, KLRG1, LAG3, CD57, and TIM3. Conclusion: Our findings imply that T-cell senescence and exhaustion is a reversible process in healthy individuals, and autologous NK cell administration can be introduced to alleviate the aging. Clinical Trial Registration: ClinicalTrials.gov, ChiCTR-OOh-17011878.


CD28 Antigens , Hepatitis A Virus Cellular Receptor 2 , CD28 Antigens/metabolism , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Killer Cells, Natural , Matrix Metalloproteinase 1/metabolism , Programmed Cell Death 1 Receptor/metabolism , Randomized Controlled Trials as Topic , Saline Solution/metabolism
13.
Contrast Media Mol Imaging ; 2022: 2387192, 2022.
Article En | MEDLINE | ID: mdl-35935327

Chemokine C-C motif chemokine ligand 3 (CCL3) plays an important role in the invasion and metastasis of malignant tumors. For developing new therapeutic targets and antitumor drugs, the effect of chemokine CCL3 and the related cytokine network on colorectal cancer should be investigated. This study used cell, tissue, and animal experiments to prove that CCL3 is highly expressed in colorectal cancer and confirmed that CCL3 can promote the proliferation of cancer cells, and its expression is closely related to TRAF6/NF-κB molecular pathway. In addition, protein chip technology was used to examine colorectal cancer tissue samples and identify the key factors of chemokine CCL3 and the toll-like receptors/nuclear factor-κB (TLR/NF-κB) pathway in cancer and metastatic lymph nodes. Furthermore, the lentiviral vector technology was employed for transfection to construct interference and overexpression cell lines. The experimental results reveal the mechanism of CCL3 and TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway-related factors and their effects on the proliferation of colon cancer cells. Finally, the expression and significance of CCL3 in colorectal cancer tissues and its correlation with clinical pathology were studied by immunohistochemistry. Also, the results confirmed that CCL3 and C-C motif chemokine receptor 5 (CCR5) were expressed in adjacent tissues, colorectal cancer tissues, and metastatic cancer. The expression level was correlated with the clinical stage and nerve invasion. The expression of chemokine CCL3 and receptor CCR5 was positively correlated with the expression of TRAF6 and NF-κB and could promote the proliferation, invasion, and migration of colorectal cancer cells through TRAF6 and NF-κB.


Colorectal Neoplasms , NF-kappa B , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL3/metabolism , Chemokine CCL3/pharmacology , Colorectal Neoplasms/pathology , NF-kappa B/metabolism , NF-kappa B/pharmacology , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/pharmacology
14.
Exp Mol Med ; 54(6): 739-752, 2022 06.
Article En | MEDLINE | ID: mdl-35662287

Liver fibrosis occurs during wound healing after repeated liver injury and is characterized by extensive extracellular matrix deposition. We previously identified hyaluronan synthase 2 (HAS2) as a driver of liver fibrosis and hepatic stellate cell (HSC) activation. Developing strategies to suppress HSC activation is key to alleviating liver fibrosis, and HAS2 is an attractive candidate for intervention. To gain insight into the molecular function of HAS2, we investigated its posttranscriptional regulation. We found that miR-200c directly targets the 3' untranslated regions of HAS2. Moreover, miR-200c and HAS2 were inversely expressed in fibrotic human and mouse livers. After establishing the direct interaction between miR-200c and HAS2, we investigated the functional outcome of regulating HAS2 expression in three murine models: CCl4-induced acute liver injury, CCl4-induced chronic liver fibrosis, and bile duct ligation-induced liver fibrosis. Hepatic Has2 expression was induced by acute and chronic CCl4 treatment. In contrast, miR-200c expression was decreased after CCl4 treatment. HSC-specific Has2 deletion reduced the expression of inflammatory markers and infiltration of macrophages in the models. Importantly, hyaluronidase-2 (HYAL2) but not HYAL1 was overexpressed in fibrotic human and murine livers. HYAL2 is an enzyme that can cleave the extracellular matrix component hyaluronan. We found that low-molecular-weight hyaluronan stimulated the expression of inflammatory genes. Treatment with the HA synthesis inhibitor 4-methylumbelliferone alleviated bile duct ligation-induced expression of these inflammatory markers. Collectively, our results suggest that HAS2 is negatively regulated by miR-200c and contributes to the development of acute liver injury and chronic liver inflammation via hyaluronan-mediated immune signaling.


Hyaluronan Synthases , Liver Cirrhosis , MicroRNAs , Animals , Carbon Tetrachloride/adverse effects , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Fibrosis , Hepatic Stellate Cells/metabolism , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/adverse effects , Hyaluronic Acid/metabolism , Inflammation/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism
15.
J Immunother Cancer ; 10(5)2022 05.
Article En | MEDLINE | ID: mdl-35613826

BACKGROUND: Although the antitumor efficacy of docetaxel (DTX) has long been attributed to the antimitotic activities, its impact on the tumor microenvironment (TME) has recently gained more attention. Macrophages are a major component of the TME and play a critical role in DTX efficacy; however, the underlying action mechanisms remain unclear. METHODS: DTX chemotherapeutic efficacy was demonstrated via both macrophage depletion and C-C motif chemokine ligand 3 (Ccl3)-knockout transgenic allograft mouse model. Ccl3-knockdown and Ccl3-overexpressing breast cancer cell allografts were used for the in vivo study. Combination therapy was used to evaluate the effect of Ccl3 induction on DTX chemosensitivity. Vital regulatory molecules and pathways were identified using RNA sequencing. Macrophage phagocytosis of cancer cells and its influence on cancer cell proliferation under DTX treatment were assessed using an in vitro coculture assay. Serum and tumor samples from patients with breast cancer were used to demonstrate the clinical relevance of our study. RESULTS: Our study revealed that Ccl3 induced by DTX in macrophages and cancer cells was indispensable for the chemotherapeutic efficacy of DTX. DTX-induced Ccl3 promoted proinflammatory macrophage polarization and subsequently facilitated phagocytosis of breast cancer cells and cancer stem cells. Ccl3 overexpression in cancer cells promoted proinflammatory macrophage polarization to suppress tumor progression and increase DTX chemosensitivity. Mechanistically, DTX induced Ccl3 by relieving the inhibition of cAMP-response element binding protein on Ccl3 via reactive oxygen species accumulation, and Ccl3 then promoted proinflammatory macrophage polarization via activation of the Ccl3-C-C motif chemokine receptor 5-p38/interferon regulatory factor 5 pathway. High CCL3 expression predicted better prognosis, and high CCL3 induction revealed better DTX chemosensitivity in patients with breast cancer. Furthermore, both the Creb inhibitor and recombinant mouse Ccl3 significantly enhanced DTX chemosensitivity. CONCLUSIONS: Our results indicate that Ccl3 induced by DTX triggers proinflammatory macrophage polarization and subsequently facilitates phagocytosis of cancer cells. Ccl3 induction in combination with DTX may provide a promising therapeutic rationale for increasing DTX chemosensitivity in breast cancer.


Breast Neoplasms , Chemokine CCL3 , Macrophages , Animals , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation , Chemokine CCL3/immunology , Chemokine CCL3/metabolism , Docetaxel/pharmacology , Docetaxel/therapeutic use , Female , Humans , Macrophage Activation , Macrophages/immunology , Macrophages/pathology , Mice , Tumor Microenvironment
16.
Int J Biol Sci ; 18(8): 3178-3193, 2022.
Article En | MEDLINE | ID: mdl-35637950

Mesangioproliferative glomerulonephritis (MsPGN) is a common human kidney disease. Rat Thy-1 nephritis (Thy-1N) is an animal model widely used for the study of MsPGN. Thy-1N is not only sublytic C5b-9-dependent, but also related to pro-inflammatory cytokine production and macrophage (Mφ) accumulation in rat renal tissues. In this study, we found that the expression or phosphorylation of chemokine CCL3/4, CD68 (Mφ marker), IRF-8, PKC-α and NF-κB-p65 (p65) were all up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the glomerular mesangial cells (GMCs) upon sublytic C5b-9 stimulation (in vitro). Further experiments in vitro revealed that the phosphorylated PKC-α (p-PKC-α) could promote p65 phosphorylation, and then p-p65 enhanced IRF-8 expression through binding to IRF-8 promotor (-591 ~ -582 nt and -299 ~ -290 nt). Additionally, up-regulation or silencing of IRF-8 gene promoted or reduced CCL3/4 production, and then regulated Mφ chemotaxis. The underlying mechanism involved in IRF-8 binding to CCL3 promoter (-249 ~ -236 nt), which resulted in CCL3 gene transcription. The experiments in vivo showed that knockdown of renal PKC-α, p65, IRF-8 and CCL3/4 genes could inhibit CCL3/4 production, Mφ accumulation, GMC proliferation and proteinuria of Thy-1N rats. Furthermore, p-PKC-α, p-p65, IRF-8, CCL3/4 expression and Mφ accumulation were also increased in the renal tissues of MsPGN patients. Collectively, these findings indicate that sublytic C5b-9 induces CCL3/4 production and Mφ accumulation via PKC-α/p65/IRF-8 axis, and finally aggravates the pathological changes of MsPGN.


Complement Membrane Attack Complex , Glomerulonephritis , Macrophages , Animals , Chemokine CCL3/metabolism , Chemokine CCL4/metabolism , Complement Membrane Attack Complex/metabolism , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Humans , Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Protein Kinase C-alpha/metabolism , Rats , Transcription Factor RelA/metabolism
17.
Adv Sci (Weinh) ; 9(16): e2103230, 2022 05.
Article En | MEDLINE | ID: mdl-35403834

Tumor heterogeneity plays a key role in cancer relapse and metastasis, however, the distinct cellular behaviors and kinetics of interactions among different cancer cell subclones and the tumor microenvironment are poorly understood. By profiling an isogenic model that resembles spontaneous human ovarian cancer metastasis with an highly metastatic (HM) and non-metastatic (NM) tumor cell pair, one finds an upregulation of Wnt/ß-catenin signaling uniquely in HM. Using humanized immunocompetent mice, one shows for the first time that activated ß-catenin acts nonautonomously to modulate the immune microenvironment by enhancing infiltrating tumor-associated macrophages (TAM) at the metastatic site. Single-cell time-lapse microscopy further reveals that upon contact with macrophages, a significant subset of HM, but not NM, becomes polyploid, a phenotype pivotal for tumor aggressiveness and therapy resistance. Moreover, HM, but not NM, polarizes macrophages to a TAM phenotype. Mechanistically, ß-catenin upregulates cancer cell surface metadherin, which communicates through CEACAM1 expressed on macrophages to produce CCL3. Tumor xenografts in humanized mice and clinical patient samples both corroborate the relevance of enhanced metastasis, TAM activation, and polyploidy in vivo. The results thus suggest that targeting the ß-catenin-metadherin/CEACAM1-CCL3 positive feedback cascade holds great therapeutic potential to disrupt polyploidization of the cancer subclones that drive metastasis.


Wnt Signaling Pathway , beta Catenin , Animals , Antigens, CD , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules , Cell Line, Tumor , Chemokine CCL3/metabolism , Humans , Macrophages/metabolism , Mice , Neoplasm Recurrence, Local/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Wnt Signaling Pathway/physiology , beta Catenin/genetics , beta Catenin/metabolism
18.
Exp Eye Res ; 219: 109057, 2022 06.
Article En | MEDLINE | ID: mdl-35358536

The purpose of this study was to analyze inflammation- and pain-related molecules in tears of patients suffering from chronic ocular pain associated with dry eye (DE) and/or a previous corneal refractive surgery (RS). Based on history, symptomatology, and clinical signs, the subjects (n = 180, 51.0 ± 14.7 years, 118 females, 62 males) in this cross-sectional study were assigned to one of five groups: DE and chronic ocular pain after RS (P/DE-RS, n = 52); asymptomatic subjects, i.e., without DE and chronic ocular pain, after RS (A-RS, n = 30); DE and chronic ocular pain without previous RS (P/DE-nonRS, n = 31); DE, no pain, and no previous RS (DE-nonRS, n = 35); and asymptomatic subjects with no previous RS (controls, n = 32). The tear concentrations of 20 cytokines and substance P (SP) were analyzed by immunobead-based assay and enzyme-linked immunosorbent assay, respectively. We found that tear levels of interleukin (IL)-10 and SP were increased in the RS groups. There were significant differences in IL-8/CXCL8 among the five groups. Nerve growth factor (NGF) tear levels were significantly higher in P/DE-RS than in DE-nonRS and controls. IL-9 had the highest percentage of detection in the P/DE-RS and P/DE-nonRS groups, while macrophage inflammatory protein (MIP)-1α, IL-2, and interferon (IFN)-γ were higher in the P/DE-RS, A-RS, and P/DE-nonRS groups. IL-17A was detected only in the A-RS group. Moderate correlations were observed in the A-RS, P/DE-nonRS, DE-nonRS and controls groups. A positive correlation was obtained between growth related oncogene concentration and tear break-up time (rho = 0.550; p = 0.012), while negative correlation was found between monocyte chemoattractant protein-3/CCL7 and conjunctival staining (rho = -0.560; p = 0.001), both in the A-RS group. IL-10 correlated positively with ocular pain intensity (rho = 0.513; p = 0.003) in the P/DE-nonRS group. Regulated on Activation Normal T Cell Expressed and Secreted/CCL5 correlated negatively with conjunctival staining (rho = -0.545; p = 0.001) in the DE-nonRS group. SP correlated negatively with corneal staining (rho = -0.559; p = 0.001) in the controls. In conclusion, chronic ocular pain was associated with higher IL-9 tear levels. IL-10, SP, MIP-1α/CCL3, IL-2, and IFN-γ were associated with previous RS. Higher levels of IL-8/CXCL8, MIP-1α/CCL3, IL-2, and IFN-γ were associated with DE-related inflammation, while NGF levels were related to chronic ocular pain and DE in RS patients. These findings suggest that improved knowledge of tear cytokines and neuromodulators will lead to a more nuanced understanding of how these molecules can serve as biomarkers of chronic ocular pain, leading to better therapeutic and disease management decisions.


Dry Eye Syndromes , Graft vs Host Disease , Chemokine CCL3/metabolism , Conjunctiva/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Dry Eye Syndromes/metabolism , Female , Graft vs Host Disease/metabolism , Humans , Inflammation/metabolism , Interleukin-10/metabolism , Interleukin-2 , Interleukin-8/metabolism , Interleukin-9/metabolism , Male , Nerve Growth Factor , Pain/metabolism , Tears/metabolism
19.
J Ethnopharmacol ; 289: 115051, 2022 May 10.
Article En | MEDLINE | ID: mdl-35101573

ETHNOPHARMACOLOGICAL RELEVANCE: Until now, inflammatory pain, especially ones with central sensitization in the spinal cord, is far from effectively treated. Yu-Xue-Bi Tablets (YXB) is a patented medicine, which has been widely applied for inflammatory pain. However, its therapeutic characteristics and mechanism remain unknown. AIM OF THE STUDY: This study is designed to evaluate the analgesic characteristics and explore the underlying mechanism of YXB in the inflammatory pain model induced by Complete Freund's Adjuvant (CFA). MATERIALS AND METHODS: The analgesic effects were measured by Von Frey test. The expression of calcitonin gene-related peptide (CGRP) was quantified by immunofluorescence. The expression of immune factors was analyzed via Luminex assay. The further quantifications of C-C Motif chemokine ligand 3 (CCL3) were verified by Enzyme-linked immunosorbent assay (ELISA). The transmigration of macrophage and activation of microglia were evaluated by immunofluorescence. Spinal injections of purified CCL3, CCR1 antagonist (J113863) and CCR5 antagonist (Maraviroc) were used to clarify roles of CCL3 assumed in the pharmacological mechanism of YXB. RESULTS: In CFA mice, YXB ameliorated the mechanical allodynia in dose and time dependent way, suppressed the central sensitization in dose dependent way. In the L5 spinal cord, YXB downregulated the expression of macrophage M1 pro-inflammatory factors TNFRI and CCL3, inhibited the transmigration of circulating macrophage and the activation of microglia. Purified CCL3 led to the transmigration of macrophage, activation of microglia, central sensitization, and mechanical allodynia in the Sham mice. Inhibitors of CCR1 and CCR5 attenuated above symptoms in CFA mice. Purified CCL3 blocked YXB mediated down regulation of CCL3, inhibition of macrophage transmigration, but not activation of microglia. CONCLUSION: YXB exerts the analgesic effects by inhibiting CCL3-mediated peripheral macrophage transmigrate into spinal cord. This study provided a novel approach for inflammatory pain treatment and new insight into the pharmacological action of YXB.


Analgesics/pharmacology , Drugs, Chinese Herbal/pharmacology , Macrophages/metabolism , Pain/drug therapy , Analgesics/administration & dosage , Animals , Cell Movement/drug effects , Chemokine CCL3/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Hyperalgesia/drug therapy , Inflammation/drug therapy , Male , Mice , Mice, Inbred ICR , Spinal Cord/drug effects , Spinal Cord/metabolism , Tablets , Time Factors
20.
Exp Dermatol ; 31(6): 936-942, 2022 06.
Article En | MEDLINE | ID: mdl-35226772

Hair folliculogenesis and hair growth mediated by the secretory properties of white adipocytes may pave the way for the adipose-derived (AD) regenerative therapy for androgenetic alopecia (AGA). Quantitative and qualitative secretome profiling of AD stem cells (ADSCs) from different zones of hair growth in patients with AGA were analysed. 1-mm punch samples of adipose tissue associated with hair follicles, of three scalp areas (balding, non-balding and transition zones) and one periumbilical sample, were used for ADCS isolation. The ADCS secretome was analysed in conditioned media using a 41plex assay. Among the thirty-five signalling proteins analysed, the levels of VEGF, EGF, IL-6, Eotaxin, MCP-3, IFNγ-inducible protein-10 and MIP-1α were higher in the balding zone compared with the non-balding and periumbilical zones. In contrast, MCP-1 was the lowest in the balding zone in comparison with the other zones. The observed differences in the secretome suggest crosstalk between angiogenic and inflammatory processes underlying AGA aetiology and may prove relevant in both the diagnosis of AGA and the application of ADSC secretome for AGA treatment.


Epidermal Growth Factor , Interleukin-6 , Adipose Tissue , Alopecia/metabolism , Chemokine CCL3/metabolism , Chemokine CXCL10/metabolism , Epidermal Growth Factor/metabolism , Hair Follicle/metabolism , Humans , Interleukin-6/metabolism , Scalp/metabolism , Secretome , Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism
...