Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Cancer Immunol Immunother ; 73(10): 206, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105803

RESUMEN

BACKGROUND: Human papillomavirus (HPV) infection has become an important etiological driver of oropharyngeal squamous cell carcinoma (OPSCC), leading to unique tumor characteristics. However, the interplay between HPV-associated tumor cells and tumor microenvironment (TME) remains an enigma. METHODS: We performed a single-cell RNA-sequencing (scRNA-seq) on HPV-positive (HPV+) and HPV-negative (HPV‒) OPSCC tumors, each for three samples, and one normal tonsil tissue. Ex vivo validation assays including immunofluorescence staining, cell line co-culture, and flow cytometry analysis were used to test specific subtypes of HPV+ tumor cells and their communications with T cells. RESULTS: Through a comprehensive single-cell transcriptome analysis, we uncover the distinct transcriptional signatures between HPV+ and HPV‒ OPSCC. Specifically, HPV+ OPSCC tumor cells manifest an enhanced interferon response and elevated expression of the major histocompatibility complex II (MHC-II), potentially bolstering tumor recognition and immune response. Furthermore, we identify a CXCL13+CD4+ T cell subset that exhibits dual features of both follicular and pro-inflammatory helper T cells. Noteworthily, HPV+ OPSCC tumor cells embrace extensive intercellular communications with CXCL13+CD4+ T cells. Interaction with HPV+ OPSCC tumor cells amplifies CXCL13 and IFNγ release in CD4+T cells, fostering a pro-inflammatory TME. Additionally, HPV+ tumor cells expressing high MHC-II and CXCL13+CD4+ T cell prevalence are indicative of favorable overall survival rates in OPSCC patients. CONCLUSIONS: Together, our study underscores a synergistic inflammatory immune response orchestrated by highly immunogenic tumor cells and CXCL13+CD4+ T cells in HPV+ OPSCC, offering useful insights into strategy development for patient stratification and effective immunotherapy in OPSCC.


Asunto(s)
Linfocitos T CD4-Positivos , Quimiocina CXCL13 , Inmunoterapia , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Microambiente Tumoral , Humanos , Neoplasias Orofaríngeas/inmunología , Neoplasias Orofaríngeas/virología , Neoplasias Orofaríngeas/terapia , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/complicaciones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Papillomaviridae
2.
Nature ; 631(8022): 857-866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987586

RESUMEN

Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Linfocitos T CD4-Positivos , Quimiocina CXCL13 , Interferón Tipo I , Lupus Eritematoso Sistémico , Proteínas Proto-Oncogénicas c-jun , Receptores de Hidrocarburo de Aril , Femenino , Humanos , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular , Quimiocina CXCL13/metabolismo , Epigenómica , Perfilación de la Expresión Génica , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Interleucina-22/inmunología , Interleucina-22/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
3.
Int Immunopharmacol ; 139: 112735, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39067397

RESUMEN

Anti-factor VIII (FVIII) antibody development poses a significant challenge in hemophilia A (HA) patients receiving FVIII protein replacement therapy. There is an urgent need for novel therapeutic strategies to inhibit the production of anti-FVIII inhibitory antibodies (inhibitors) in HA. This study aimed to investigate a combination monoclonal antibody (mAb) therapy targeting CXCL13 and CD20 on the development of anti-FVIII antibodies in a HA murine model, along with the underlying mechanisms involved. Specifically, mAbs targeting mouse CD20 (18B12) with an IgG2a backbone and mouse CXCL13 (2C4) with an IgG1 backbone were synthesized. HA mice with FVIII inhibitors were established, and the results revealed that the combination therapy of anti-mCD20 with α-mCXCL13 significantly suppressed anti-FVIII antibody development and induced FVIII tolerance. Furthermore, this combination therapy led to a marked reduction of peripheral and splenic follicular helper T cells and an enhancement of regulatory T cell induction, along with sustained depletion of bone marrow and splenic plasma cells in HA mice with preexisting FVIII immunity. Thus, the concurrence of blockage of CD20 and neutralization of CXCL13 hold promise as a therapeutic strategy for HA patients with inhibitors.


Asunto(s)
Anticuerpos Monoclonales , Quimiocina CXCL13 , Factor VIII , Hemofilia A , Animales , Hemofilia A/tratamiento farmacológico , Hemofilia A/inmunología , Factor VIII/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Ratones , Quimiocina CXCL13/inmunología , Quimiocina CXCL13/metabolismo , Humanos , Antígenos CD20/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino
4.
Cancer Immunol Res ; 12(8): 952-953, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967231

RESUMEN

Sex differences in cancer survivorship and response to immunotherapy have been observed, with males generally displaying better outcomes to immune checkpoint blockade compared with females. In this article, by interrogating public lung cancer sequencing datasets, Brennan and colleagues uncover a chemokine axis that may contribute to disparate immunotherapy outcomes between the sexes. See related article by Brennan et al., p. 956 (3).


Asunto(s)
Quimiocina CXCL13 , Inmunoterapia , Humanos , Inmunoterapia/métodos , Femenino , Masculino , Quimiocina CXCL13/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Factores Sexuales
5.
Cell Mol Life Sci ; 81(1): 265, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880863

RESUMEN

Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.


Asunto(s)
Quimiocina CXCL13 , Glucolípidos , Osificación Heterotópica , Osteogénesis , Receptores CXCR5 , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osificación Heterotópica/genética , Ratones , Humanos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Glucolípidos/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR5/genética , Células Madre/metabolismo , Tendones/metabolismo , Tendones/patología , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Senescencia Celular , Transducción de Señal , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología
6.
Cancer Lett ; 593: 216951, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734159

RESUMEN

Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK + effector memory T cells (Tem) were relatively enriched and CXCL13+ exhausted T cells (Tex) and regulator T cells (Treg) decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B + memory B cells (Bmem) suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK + Tem and TNFRSF13B + Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Inmunoterapia , Terapia Neoadyuvante , Análisis de la Célula Individual , Humanos , Terapia Neoadyuvante/métodos , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Inmunoterapia/métodos , Análisis de la Célula Individual/métodos , Femenino , Masculino , Microambiente Tumoral/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Persona de Mediana Edad , Anciano , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Antígenos Comunes de Leucocito/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Receptores CXCR5/metabolismo , Receptores CXCR5/genética
7.
Front Immunol ; 15: 1382638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715601

RESUMEN

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Asunto(s)
Linfocitos T CD4-Positivos , Ligando de CD40 , Pulmón , Células B de Memoria , Streptococcus pneumoniae , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Quimiocina CXCL13/metabolismo , Modelos Animales de Enfermedad , Memoria Inmunológica , Pulmón/inmunología , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Ratones Endogámicos C57BL , Infecciones Neumocócicas/inmunología , Transducción de Señal , Streptococcus pneumoniae/inmunología
8.
Cancer Immunol Res ; 12(8): 956-963, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695618

RESUMEN

Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared with male patients. Furthermore, increased CXCL13 expression was associated with response to PD1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD1 therapy in lung cancer that may need to be considered during patient treatment decisions. See related Spotlight by Cruz-Hinojoza and Stromnes, p. 952.


Asunto(s)
Quimiocina CXCL13 , Inmunoterapia , Neoplasias Pulmonares , Linfocitos T , Humanos , Quimiocina CXCL13/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Femenino , Masculino , Inmunoterapia/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores Sexuales , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo
9.
Biochem Biophys Res Commun ; 712-713: 149943, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640733

RESUMEN

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.


Asunto(s)
Quimiocina CXCL13 , Proteínas de Microfilamentos , Monocitos , Animales , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/patología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Ratones , Ratones Endogámicos C57BL , Nefritis Lúpica/patología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/inmunología , Nefritis Lúpica/genética , Ratones Noqueados , Riñón/patología , Riñón/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo
10.
J Gastroenterol ; 59(6): 442-456, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38499886

RESUMEN

BACKGROUND: Nodular gastritis (NG) is characterized by marked antral lymphoid follicle formation, and is a strong risk factor for diffuse-type gastric cancer in adults. However, it is unknown whether aberrant DNA methylation, which is induced by atrophic gastritis (AG) and is a risk for gastric cancer, is induced by NG. Here, we analyzed methylation induction by NG. METHODS: Gastric mucosal samples were obtained from non-cancerous antral tissues of 16 NG and 20 AG patients with gastric cancer and 5 NG and 6 AG patients without, all age- and gender-matched. Genome-wide methylation analysis and expression analysis were conducted by a BeadChip array and RNA-sequencing, respectively. RESULTS: Clustering analysis of non-cancerous antral tissues of NG and AG patients with gastric cancer was conducted using methylation levels of 585 promoter CpG islands (CGIs) of methylation-resistant genes, and a large fraction of NG samples formed a cluster with strong methylation induction. Promoter CGIs of CDH1 and DAPK1 tumor-suppressor genes were more methylated in NG than in AG. Notably, methylation levels of these genes were also higher in the antrum of NG patients without cancer. Genes related to lymphoid follicle formation, such as CXCL13/CXCR5 and CXCL12/CXCR4, had higher expression in NG, and genes involved in DNA demethylation TET2 and IDH1, had only half the expression in NG. CONCLUSIONS: Severe aberrant methylation, involving multiple tumor-suppressor genes, was induced in the gastric antrum and body of patients with NG, in accordance with their high gastric cancer risk.


Asunto(s)
Islas de CpG , Metilación de ADN , Mucosa Gástrica , Gastritis Atrófica , Neoplasias Gástricas , Humanos , Masculino , Femenino , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Persona de Mediana Edad , Anciano , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Islas de CpG/genética , Gastritis Atrófica/genética , Proteínas Proto-Oncogénicas/genética , Regiones Promotoras Genéticas , Cadherinas/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Dioxigenasas/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Adulto , Proteínas de Unión al ADN/genética , Gastritis/genética , Antro Pilórico/patología , Antro Pilórico/metabolismo , Factores de Riesgo
11.
JCI Insight ; 9(8)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38478516

RESUMEN

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Asunto(s)
Quimiocina CXCL13 , Inmunoterapia , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Carcinoma Anaplásico de Tiroides/patología , Carcinoma Anaplásico de Tiroides/terapia , Carcinoma Anaplásico de Tiroides/inmunología , Animales , Ratones , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/terapia , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/genética , Inmunoterapia/métodos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Análisis de la Célula Individual , Pronóstico , Linfocitos T/inmunología , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino
12.
Gastroenterology ; 166(6): 1069-1084, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445519

RESUMEN

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined in vitro and in vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Asunto(s)
Antígenos CD , Linfocitos B , Linfocitos T CD8-positivos , Quimiocina CXCL13 , Inhibidores de Puntos de Control Inmunológico , Cadenas alfa de Integrinas , Células T de Memoria , Receptor de Muerte Celular Programada 1 , Neoplasias Gástricas , Estructuras Linfoides Terciarias , Quimiocina CXCL13/metabolismo , Humanos , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/efectos de los fármacos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamiento farmacológico , Antígenos CD/metabolismo , Cadenas alfa de Integrinas/metabolismo , Cadenas alfa de Integrinas/inmunología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Animales , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Granzimas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Memoria Inmunológica , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral
13.
Neuroreport ; 35(6): 406-412, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526919

RESUMEN

Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1ß, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1ß, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.


Asunto(s)
Quimiocina CXCL13 , Proteína con Dominio Pirina 3 de la Familia NLR , Neuralgia , Dolor Postoperatorio , Receptores CXCR5 , Animales , Ratas , Astrocitos/metabolismo , Caspasas , Quimiocina CXCL13/metabolismo , Interleucina-18 , Neuralgia/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dolor Postoperatorio/metabolismo , Ratas Sprague-Dawley , Receptores CXCR5/metabolismo , Proteínas Recombinantes
14.
Front Immunol ; 14: 1253766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936696

RESUMEN

Introduction: Brown adipose tissue (BAT) is mainly responsible for mammalian non-shivering thermogenesis and promotes energy expenditure. Meanwhile, similar to white adipose tissue (WAT), BAT also secretes a variety of adipokines to regulate metabolism through paracrine, autocrine, or endocrine ways. The chemokine C-X-C motif chemokine ligand-13 (CXCL13), a canonical B cell chemokine, functions in inflammation and tumor-related diseases. However, the role of CXCL13 in the adipose tissues is unclear. Methods: The expression of CXCL13 in BAT and subcutaneous white adipose tissue (SWAT) of mice under cold stimulation were detected. Local injection of CXCL13 into BAT of normal-diet and high-fat-diet induced obese mice was used to detect thermogenesis and determine cold tolerance. The brown adipocytes were treated with CXCL13 alone or in the presence of macrophages to determine the effects of CXCL13 on thermogenic and inflammation related genes expression in vitro. Results: In this study, we discovered that the expression of CXCL13 in the stromal cells of brown adipose tissue significantly elevated under cold stimulation. Overexpression of CXCL13 in the BAT via local injection could increase energy expenditure and promote thermogenesis in obese mice. Mechanically, CXCL13 could promote thermogenesis via recruiting M2 macrophages in the BAT and, in the meantime, inhibiting pro-inflammatory factor TNFα level. Discussion: This study revealed the novel role of adipose chemokine CXCL13 in the regulation of BAT activity and thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Quimiocina CXCL13 , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Quimiocina CXCL13/metabolismo , Macrófagos/metabolismo , Mamíferos , Ratones Obesos , Termogénesis/genética
15.
Front Immunol ; 14: 1221532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520560

RESUMEN

Introduction: Tumour-reactive T cells producing the B-cell attractant chemokine CXCL13, in solid tumours, promote development of tertiary lymphoid structures (TLS) and are associated with improved prognosis and responsiveness to checkpoint immunotherapy. Cancer associated fibroblasts are the dominant stromal cell type in non-small cell lung cancer (NSCLC) where they co-localise with T cells and can influence T cell activation and exhaustion. We questioned whether CAF directly promote CXCL13-production during T cell activation. Methods: We characterised surface markers, cytokine production and transcription factor expression in CXCL13-producing T cells in NSCLC tumours and paired non-cancerous lung samples using flow cytometry. We then assessed the influence of human NSCLC-derived primary CAF lines on T cells from healthy donors and NSCLC patients during activation in vitro measuring CXCL13 production and expression of cell-surface markers and transcription factors by flow cytometry. Results: CAFs significantly increased the production of CXCL13 by both CD4+ and CD8+ T cells. CAF-induced CXCL13-producing cells lacked expression of CXCR5 and BCL6 and displayed a T peripheral helper cell phenotype. Furthermore, we demonstrate CXCL13 production by T cells is induced by TGF-ß and limited by IL-2. CAF provide TGF-ß during T cell activation and reduce availability of IL-2 both directly (by reducing the capacity for IL-2 production) and indirectly, by expanding a population of activated Treg. Inhibition of TGF-ß signalling prevented both CAF-driven upregulation of CXCL13 and Treg expansion. Discussion: Promoting CXCL13 production represents a newly described immune-regulatory function of CAF with the potential to shape the immune infiltrate of the tumour microenvironment both by altering the effector-function of tumour infiltrating T-cells and their capacity to attract B cells and promote TLS formation.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Factor de Crecimiento Transformador beta , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos , Interleucina-2 , Microambiente Tumoral , Quimiocina CXCL13/metabolismo
16.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158939

RESUMEN

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Asunto(s)
Quimiocina CXCL13 , Dolor Crónico , Receptores CXCR5 , Distrofia Simpática Refleja , Animales , Ratones , Quimiocina CXCL13/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia , Enfermedades Neuroinflamatorias , FN-kappa B , Asta Dorsal de la Médula Espinal , Receptores CXCR5/metabolismo
17.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047294

RESUMEN

Foot-and-mouth disease (FMD) is one of the most contagious livestock diseases in the world, posing a constant global threat to the animal trade and national economies. The chemokine C-X-C motif chemokine ligand 13 (CXCL13), a biomarker for predicting disease progression in some diseases, was recently found to be increased in sera from mice infected with FMD virus (FMDV) and to be associated with the progression and severity of the disease. However, it has not yet been determined which cells are involved in producing CXCL13 and the signaling pathways controlling CXCL13 expression in these cells. In this study, the expression of CXCL13 was found in macrophages and T cells from mice infected with FMDV, and CXCL13 was produced in bone-marrow-derived macrophages (BMDMs) by activating the nuclear factor-kappaB (NF-κB) and JAK/STAT pathways following FMDV infection. Interestingly, CXCL13 concentration was decreased in sera from interleukin-10 knock out (IL-10-/-) mice or mice blocked IL-10/IL-10R signaling in vivo after FMDV infection. Furthermore, CXCL13 was also decreased in IL-10-/- BMDMs and BMDMs treated with anti-IL-10R antibody following FMDV infection in vitro. Lastly, it was demonstrated that IL-10 regulated CXCL13 expression via JAK/STAT rather than the NF-κB pathway. In conclusion, the study demonstrated for the first time that macrophages and T cells were the cellular sources of CXCL13 in mice infected with FMDV; CXCL13 was produced in BMDMs via NF-κB and JAK/STAT pathways; and IL-10 promoted CXCL13 expression in BMDMs via the JAK/STAT pathway.


Asunto(s)
Virus de la Fiebre Aftosa , Ratones , Animales , FN-kappa B/metabolismo , Transducción de Señal , Interleucina-10/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Macrófagos/metabolismo , Quimiocina CXCL13/metabolismo
18.
J Hematol Oncol ; 15(1): 144, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217194

RESUMEN

BACKGROUND: We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. METHODS: In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. RESULTS: Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFß signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. CONCLUSIONS: Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM.


Asunto(s)
Quimiocina CXCL13 , Macrófagos , Mieloma Múltiple , Animales , Quimiocina CXCL13/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Mieloma Múltiple/patología , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Tirosina Quinasa c-Mer/metabolismo
19.
Curr Pharm Des ; 28(34): 2842-2854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045515

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status. METHODS: We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA. RESULTS: We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1. CONCLUSION: There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Biomarcadores , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Biología Computacional , Aprendizaje Automático , Proteínas de la Membrana/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
20.
J Neuroinflammation ; 19(1): 173, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787714

RESUMEN

BACKGROUND: Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS: We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS: Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION: Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.


Asunto(s)
Enfermedad de Alzheimer , Quimiocina CXCL13/metabolismo , Microglía , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Fosforilación , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA