Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 41(31): 6652-6672, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34168008

RESUMEN

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.


Asunto(s)
Orientación del Axón/fisiología , Quimerina 1/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Músculos Oculomotores/inervación , Estatmina/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Quimerina 1/genética , Síndrome de Retracción de Duane/genética , Movimientos Oculares , Transducción de Señal/fisiología , Pez Cebra
2.
BMC Cancer ; 20(1): 1029, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109127

RESUMEN

BACKGROUND: Cervical cancer is the leading cause of cancer-related death in women worldwide. However, the mechanisms mediating the development and progression of cervical cancer are unclear. In this study, we aimed to elucidate the roles of microRNAs and a1-chimaerin (CHN1) protein in cervical cancer progression. METHODS: The expression of miR-205 and CHN1 protein was investigated by in situ hybridisation and immunohistochemistry. We predicted the target genes of miR-205 using software prediction and dual luciferase assays. The expression of mRNAs and proteins was tested by qRT-PCR and western blotting respectively. The ability of cell growth, migration and invasion was evaluated by CCK-8 and transwell. Cell apoptosis was analysed by flow cytometry analysis. RESULTS: We found that miR-205 and CHN1 were highly expressed in human cervical cancer tissue compared with paired normal cervical tissues. The CHN1 gene was shown to be targeted by miR-205 in HeLa cells. Interestingly, transfection with miR-205 mimic upregulated CHN1 mRNA and protein, while miR-205 inhibitor downregulated CHN1 in high-risk and human papilloma virus (HPV)-negative human cervical cancer cells in vitro,. These data suggested that miR-205 positively regulated the expression of CHN1. Furthermore, the miR-205 mimic promoted cell growth, apoptosis, migration, and invasion in high-risk and HPV-negative cervical cancer cells, while the miR-205 inhibitor blocked these biological processes. Knockdown of CHN1 obviously reduced the aggressive cellular behaviours induced by upregulation of miR-205, suggesting that miR-205 positively regulated CHN1 to mediate these cell behaviours during the development of cervical cancer. Furthermore, CHN1 was correlated with lymph node metastasis in clinical specimens. CONCLUSIONS: Our findings showed that miR-205 positively regulated CHN1 to mediate cell growth, apoptosis, migration, and invasion during cervical cancer development, particularly for high-risk HPV-type cervical cancer. These findings suggested that dysregulation of miR-205 and subsequent abnormalities in CHN1 expression promoted the oncogenic potential of human cervical cancer.


Asunto(s)
Quimerina 1/genética , Metástasis Linfática/genética , MicroARNs/genética , Regulación hacia Arriba , Neoplasias del Cuello Uterino/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimerina 1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Neoplasias del Cuello Uterino/metabolismo
3.
Nat Commun ; 10(1): 5313, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757963

RESUMEN

Memory consolidation theory suggests that once memory formation has been completed, memory is maintained at a stable strength and is incapable of further enhancement. However, the current study reveals that even long after formation, contextual fear memory could be further enhanced. Such unexpected enhancement is possible because memory is dynamically maintained at an intermediate level that allows for bidirectional regulation. Here we find that both Rac1 activation and expression of α2-chimaerin are stimulated by single-trial contextual fear conditioning. Such sustained Rac1 activity mediates reversible forgetting, and α2-chimaerin acts as a memory molecule that reverses forgetting to sustain memory through inhibition of Rac1 activity during the maintenance stage. Therefore, the balance between activated Rac1 and expressed α2-chimaerin defines dynamic long-term memory maintenance. Our findings demonstrate that consolidated memory maintains capacity for bidirectional regulation.


Asunto(s)
Quimerina 1/genética , Condicionamiento Clásico/fisiología , Hipocampo/metabolismo , Memoria a Largo Plazo/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Carbazoles/farmacología , Quimerina 1/metabolismo , Miedo , Técnicas de Silenciamiento del Gen , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Masculino , Consolidación de la Memoria , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuropéptidos/antagonistas & inhibidores , Optogenética , Pirimidinas/farmacología , Proteína de Unión al GTP rac1/antagonistas & inhibidores
4.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30016580

RESUMEN

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Orientación del Axón/fisiología , Extremidades/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Pollo , Quimerina 1/metabolismo , Efrinas/fisiología , Extremidades/embriología , Neuritas , Receptores de la Familia Eph/metabolismo
5.
J Neurosci ; 37(32): 7682-7699, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28747385

RESUMEN

In the developing CNS, the midline barrier, which comprises guidance molecule-expressing midline glial somata and processes, plays a pivotal role in midline axon guidance. Accumulating evidence has revealed the molecular mechanisms by which the midline barrier ensures proper midline guidance for axons. In contrast, the mechanisms for establishing the midline barrier remain obscure. Here, we report that Rac-specific GTPase-activating protein (RacGAP) α-chimaerin is required for both axonal repulsion at and establishment of the midline barrier in the spinal cord. We generated cortex-specific and spinal-cord-specific α-chimaerin gene (Chn1) knock-out mice (Cx-Chn1KO and Sp-Chn1KO mice, respectively) and found that both showed aberrant corticospinal tract (CST) axon midline crossing in the spinal cord. Strikingly, Sp-Chn1KO mice had breaks (holes) in the ephrinB3(+) spinal midline barrier and EphA4(+) CST axons aberrantly crossed the midline through these holes. During normal embryonic development, EphA4(+) spinal cells are located in juxta-midline areas but are excluded from the midline. In contrast, in Chn1KO embryos, several EphA4(+) cells were aberrantly relocated into the midline and the midline barrier was broken around these cells. Similarly, the spinal cord midline of Epha4KO mice was invaded by juxta-midline EphA4 cells (i.e., Epha4 promoter-active cells) during the embryonic stage and holes were formed in the midline barrier. Juxta-midline EphA4 cells in the spinal cord expressed α-chimaerin. We propose that spinal α-chimaerin aids in establishing an intact spinal midline barrier by mediating juxta-midline EphA4(+) cell repulsion, thus preventing these cells from breaking into the ephrinB3(+) midline barrier.SIGNIFICANCE STATEMENT The midline barrier plays a critical role in midline axon guidance, which is fundamental to the formation of neural circuits that are responsible for proper left-right coordination of the body. Studies have revealed some of the mechanisms underlying how the midline barrier navigates axons. In contrast, the establishment of the midline barrier during embryonic development remains unclear. In this study, we determined that α-chimaerin is required for the formation of an intact midline barrier. Spinal-cord-specific α-chimaerin knock-out mice had spinal midline barriers with numerous breaks (holes), through which corticospinal axons aberrantly crossed the midline. We propose that α-chimaerin protects the midline barrier by mediating cell-repulsive signaling in juxta-midline cells, which prevents these cells from invading the midline.


Asunto(s)
Orientación del Axón/fisiología , Axones/metabolismo , Quimerina 1/metabolismo , Tractos Piramidales/metabolismo , Médula Espinal/metabolismo , Proteínas de Unión al GTP rac/deficiencia , Animales , Animales Recién Nacidos , Quimerina 1/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Tractos Piramidales/embriología , Tractos Piramidales/crecimiento & desarrollo , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Proteínas de Unión al GTP rac/genética
6.
J Clin Invest ; 127(5): 1664-1682, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28346224

RESUMEN

Duane retraction syndrome (DRS) is the most common form of congenital paralytic strabismus in humans and can result from α2-chimaerin (CHN1) missense mutations. We report a knockin α2-chimaerin mouse (Chn1KI/KI) that models DRS. Whole embryo imaging of Chn1KI/KI mice revealed stalled abducens nerve growth and selective trochlear and first cervical spinal nerve guidance abnormalities. Stalled abducens nerve bundles did not reach the orbit, resulting in secondary aberrant misinnervation of the lateral rectus muscle by the oculomotor nerve. By contrast, Chn1KO/KO mice did not have DRS, and embryos displayed abducens nerve wandering distinct from the Chn1KI/KI phenotype. Murine embryos lacking EPH receptor A4 (Epha4KO/KO), which is upstream of α2-chimaerin in corticospinal neurons, exhibited similar abducens wandering that paralleled previously reported gait alterations in Chn1KO/KO and Epha4KO/KO adult mice. Findings from Chn1KI/KI Epha4KO/KO mice demonstrated that mutant α2-chimaerin and EphA4 have different genetic interactions in distinct motor neuron pools: abducens neurons use bidirectional ephrin signaling via mutant α2-chimaerin to direct growth, while cervical spinal neurons use only ephrin forward signaling, and trochlear neurons do not use ephrin signaling. These findings reveal a role for ephrin bidirectional signaling upstream of mutant α2-chimaerin in DRS, which may contribute to the selective vulnerability of abducens motor neurons in this disorder.


Asunto(s)
Quimerina 1/metabolismo , Síndrome de Retracción de Duane/metabolismo , Embrión de Mamíferos/metabolismo , Neuronas Motoras/metabolismo , Receptor EphA4/metabolismo , Transducción de Señal , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Quimerina 1/genética , Síndrome de Retracción de Duane/genética , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/patología , Receptor EphA4/genética , Médula Espinal/metabolismo , Médula Espinal/patología
7.
Mol Cell Neurosci ; 75: 14-26, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297944

RESUMEN

Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity.


Asunto(s)
Quimerina 1/metabolismo , Espinas Dendríticas/metabolismo , Neurogénesis , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Quimerina 1/genética , Espinas Dendríticas/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
8.
Clin Lab ; 61(10): 1409-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26642701

RESUMEN

BACKGROUND: Chemerin is an important risk factor of insulin resistance. Non-alcoholic fatty liver has typical characteristics of insulin resistance. The aim of this study was to explore the potential role of chemerin in NAFLD. METHODS: 45 subjects included 22 control subjects (A group) and 23 subjects diagnosed with non-alcoholic fatty liver disease (B group) participated in the study. 23 patients in the NAFLD group received oral daily metformin at a dose of 20 mg/kg/day for 24 weeks follow-up. Chemerin and insulin resistance markers were determined at baseline and 24 weeks. RESULTS: The levels of WHR, BMI, FINS, HOMA-IR, TG, ALT, AST, and Chemerin in B group were significantly higher than A group. After 24 weeks of metformin treatment, the levels of WHR, AST, ALT, TG, chemerin and HOMA-IR were significantly reduced (p < 0.05) and other indexes were not changed significantly. Correlation analysis indicated that serum chemerin concentrations were positively correlated with BMI, WHR, HOMA-IR, FINS, TG, ALT, and AST levels. Logistic regression analysis showed chemerin, TG, and ALT were independent variables associated with NAFLD. CONCLUSIONS: These findings showed a significant increase of chemerin level in NAFLD patients. Metformin treatment can improve NAFLD and decrease the level of chemerin. Chemerin, TG, and ALT were independent variables associated with NAFLD.


Asunto(s)
Quimerina 1/metabolismo , Metformina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Administración Oral , Adulto , Biomarcadores/metabolismo , Presión Sanguínea , Sinergismo Farmacológico , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/química , Resistencia a la Insulina , Modelos Logísticos , Masculino , Persona de Mediana Edad , Factores de Riesgo
9.
J Neurosci ; 35(40): 13728-44, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446225

RESUMEN

Morphological characteristics of dendritic spines form the basis of cognitive ability. However, molecular mechanisms involved in fine-tuning of spine morphology during development are not fully understood. Moreover, it is unclear whether, and to what extent, these developmental mechanisms determine the normal adult spine morphological features. Here, we provide evidence that α2-isoform of Rac-specific GTPase-activating protein α-chimaerin (α2-chimaerin) is involved in spine morphological refinement during late postnatal period, and furthermore show that this developmental α2-chimaerin function affects adult spine morphologies. We used a series of mice with global and conditional knock-out of α-chimaerin isoforms (α1-chimaerin and α2-chimaerin). α2-Chimaerin disruption, but not α1-chimaerin disruption, in the mouse results in an increased size (and density) of spines in the hippocampus. In contrast, overexpression of α2-chimaerin in developing hippocampal neurons induces a decrease of spine size. Disruption of α2-chimaerin suppressed EphA-mediated spine morphogenesis in cultured developing hippocampal neurons. α2-Chimaerin disruption that begins during the juvenile stage results in an increased size of spines in the hippocampus. Meanwhile, spine morphologies are unaltered when α2-chimaerin is deleted only in adulthood. Consistent with these spine morphological results, disruption of α2-chimaerin beginning in the juvenile stage led to an increase in contextual fear learning in adulthood; whereas contextual learning was recently shown to be unaffected when α2-chimaerin was deleted only in adulthood. Together, these results suggest that α2-chimaerin signaling in developmental stages contributes to determination of the morphological features of adult spines and establishment of normal cognitive ability. SIGNIFICANCE STATEMENT: Recent studies of neurodevelopmental disorders in humans and their animal models have led to an attractive hypothesis that spine morphogenesis during development forms the basis of adult cognition. In particular, the roles of Rac and its regulators, such as Rac-specific GTPase-activating proteins (RacGAPs) and Rac guanine nucleotide exchange factors, are a topic of focus in spine morphogenesis and cognitive ability. Using a series of mice with global and conditional knock-out (KO) of RacGAP α-chimaerin isoforms (α1-chimaerin and α2-chimaerin), we provide compelling evidence demonstrating that α2-chimaerin is involved in spine morphological refinement during late postnatal development and that this developmental α2-chimaerin function affects adult spine morphologies. Furthermore, our results clearly showed that α2-chimaerin signaling during late postnatal development contributes to normal cognitive ability in adult mice.


Asunto(s)
Quimerina 1/metabolismo , Espinas Dendríticas/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Transducción de Señal/fisiología , Potenciales de Acción/genética , Factores de Edad , Animales , Animales Recién Nacidos , Quimerina 1/genética , Condicionamiento Psicológico/fisiología , Efrina-A3/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo , Proteínas Activadoras de GTPasa/genética , Hipocampo/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/ultraestructura , Transducción de Señal/genética
10.
Neurosci Lett ; 591: 19-24, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25676811

RESUMEN

Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Quimerina 1/metabolismo , ARN Mensajero/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Quimerina 1/genética , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Células Piramidales/metabolismo , Lóbulo Temporal/metabolismo
11.
Cell Rep ; 8(5): 1257-64, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25159148

RESUMEN

A major concern in neuroscience is how cognitive ability in adulthood is affected and regulated by developmental mechanisms. The molecular bases of cognitive development are not well understood. We provide evidence for the involvement of the α2 isoform of Rac-specific guanosine triphosphatase (GTPase)-activating protein (RacGAP) α-chimaerin (chimerin) in this process. We generated and analyzed mice with global and conditional knockouts of α-chimaerin and its isoforms (α1-chimaerin and α2-chimaerin) and found that α-chimaerin plays a wide variety of roles in brain function and that the roles of α1-chimaerin and α2-chimaerin are distinct. Deletion of α2-chimaerin, but not α1-chimaerin, beginning during early development results in an increase in contextual fear learning in adult mice, whereas learning is not altered when α2-chimaerin is deleted only in adulthood. Our findings suggest that α2-chimaerin acts during development to establish normal cognitive ability in adulthood.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Quimerina 1/metabolismo , Cognición , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Quimerina 1/genética , Condicionamiento Clásico , Miedo , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
J Neurosci ; 34(11): 3841-53, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24623763

RESUMEN

EphA4 signaling is essential for the spatiotemporal organization of neuronal circuit formation. In mice, deletion of this signaling pathway causes aberrant midline crossing of axons from both brain and spinal neurons and the complete knock-outs (KOs) exhibit a pronounced change in motor behavior, where alternating gaits are replaced by a rabbit-like hopping gait. The neuronal mechanism that is responsible for the gait switch in these KO mice is not known. Here, using intersectional genetics, we demonstrate that a spinal cord-specific deletion of EphA4 signaling is sufficient to generate the overground hopping gait. In contrast, selective deletion of EphA4 signaling in forebrain neurons, including the corticospinal tract neurons, did not result in a change in locomotor pattern. The gait switch was attributed to the loss of EphA4 signaling in excitatory Vglut2+ neurons, which is accompanied by an increased midline crossing of Vglut2+ neurons in the ventral spinal cord. Our findings functionally define spinal EphA4 signaling in excitatory Vglut2+ neurons as required for proper organization of the spinal locomotor circuitry, and place these cells as essential components of the mammalian locomotor network.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Interneuronas/metabolismo , Locomoción/fisiología , Receptor EphA4/metabolismo , Transducción de Señal/fisiología , Médula Espinal/fisiología , Animales , Generadores de Patrones Centrales/citología , Quimerina 1/genética , Quimerina 1/metabolismo , Vías Eferentes/fisiología , Femenino , Ácido Glutámico/fisiología , Cojera Animal/genética , Cojera Animal/patología , Cojera Animal/fisiopatología , Masculino , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Tractos Piramidales/fisiología , Receptor EphA4/genética , Médula Espinal/citología
13.
Carcinogenesis ; 35(9): 1993-2001, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24675530

RESUMEN

Pleomorphic adenoma gene like-2 (PLAGL2), a member of the PLAG gene family, is a C2H2 zinc finger transcriptional factor that is involved in cellular transformation and apoptosis. In this report, we show that PLAGL2 is associated with the organization of stress fibers and with small guanosine triphosphatase (GTPase) activity. Depletion of PLAGL2 in two different ovarian cancer cell lines, ES-2 and HEY, induced activation of RhoA, whereas activity of Rac1 was suppressed. Organization of actin stress fibers and focal adhesions was significantly promoted by PLAGL2 knockdown in a RhoA-dependent manner. Conversely, exogenous expression of PLAGL2 in MDA-MB-231 cells, a breast cancer cell line, resulted in the activation of Rac1 and the inactivation of RhoA. In addition, PLAGL2 expression induced lamellipodia formation and disruption of stress fiber formation. Finally, we show that CHN1 expression is essential for Rac1 inactivation in PLAGL2-depleted cells. Our results demonstrate a crucial role of PLAGL2 in actin dynamics and give further insight into the role of PLAGL2 in cellular transformation and apoptosis.


Asunto(s)
Movimiento Celular , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ARN/fisiología , Fibras de Estrés/metabolismo , Factores de Transcripción/fisiología , Línea Celular Tumoral , Quimerina 1/metabolismo , Humanos , Seudópodos/metabolismo , Seudópodos/patología , Fibras de Estrés/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
J Neurosci ; 33(42): 16540-51, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133258

RESUMEN

The ocular motor system consists of three nerves which innervate six muscles to control eye movements. In humans, defective development of this system leads to eye movement disorders, such as Duane Retraction Syndrome, which can result from mutations in the α2-chimaerin signaling molecule. We have used the zebrafish to model the role of α2-chimaerin during development of the ocular motor system. We first mapped ocular motor spatiotemporal development, which occurs between 24 and 72 h postfertilization (hpf), with the oculomotor nerve following an invariant sequence of growth and branching to its muscle targets. We identified 52 hpf as a key axon guidance "transition," when oculomotor axons reach the orbit and select their muscle targets. Live imaging and quantitation showed that, at 52 hpf, axons undergo a switch in behavior, with striking changes in the dynamics of filopodia. We tested the role of α2-chimaerin in this guidance process and found that axons expressing gain-of-function α2-chimaerin isoforms failed to undergo the 52 hpf transition in filopodial dynamics, leading to axon stalling. α2-chimaerin loss of function led to ecotopic and misguided branching and hypoplasia of oculomotor axons; embryos had defective eye movements as measured by the optokinetic reflex. Manipulation of chimaerin signaling in oculomotor neurons in vitro led to changes in microtubule stability. These findings demonstrate that a correct level of α2-chimaerin signaling is required for key oculomotor axon guidance decisions, and provide a zebrafish model for Duane Retraction Syndrome.


Asunto(s)
Axones/metabolismo , Quimiotaxis/fisiología , Quimerina 1/metabolismo , Movimientos Oculares/fisiología , Nervio Oculomotor/metabolismo , Animales , Células Cultivadas , Quimerina 1/genética , Modelos Animales de Enfermedad , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Seudópodos/metabolismo , Transducción de Señal/fisiología , Pez Cebra
15.
Proc Natl Acad Sci U S A ; 109(36): 14669-74, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22912401

RESUMEN

Eye movements depend on correct patterns of connectivity between cranial motor axons and the extraocular muscles. Despite the clinical importance of the ocular motor system, little is known of the molecular mechanisms underlying its development. We have recently shown that mutations in the Chimaerin-1 gene encoding the signaling protein α2-chimaerin (α2-chn) perturb axon guidance in the ocular motor system and lead to the human eye movement disorder, Duane retraction syndrome (DRS). The axon guidance cues that lie upstream of α2-chn are unknown; here we identify candidates to be the Semaphorins (Sema) 3A and 3C, acting via the PlexinA receptors. Sema3A/C are expressed in and around the developing extraocular muscles and cause growth cone collapse of oculomotor neurons in vitro. Furthermore, RNAi knockdown of α2-chn or PlexinAs in oculomotor neurons abrogates Sema3A/C-dependent growth cone collapse. In vivo knockdown of endogenous PlexinAs or α2-chn function results in stereotypical oculomotor axon guidance defects, which are reminiscent of DRS, whereas expression of α2-chn gain-of-function constructs can rescue PlexinA loss of function. These data suggest that α2-chn mediates Sema3-PlexinA repellent signaling. We further show that α2-chn is required for oculomotor neurons to respond to CXCL12 and hepatocyte growth factor (HGF), which are growth promoting and chemoattractant during oculomotor axon guidance. α2-chn is therefore a potential integrator of different types of guidance information to orchestrate ocular motor pathfinding. DRS phenotypes can result from incorrect regulation of this signaling pathway.


Asunto(s)
Quimerina 1/metabolismo , Síndrome de Retracción de Duane/fisiopatología , Conos de Crecimiento/fisiología , Músculos Oculomotores/embriología , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Animales , Quimiocina CXCL12/metabolismo , Embrión de Pollo , Quimerina 1/genética , Técnicas de Silenciamiento del Gen , Factor de Crecimiento de Hepatocito/metabolismo , Inmunohistoquímica , Hibridación in Situ , Músculos Oculomotores/inervación , Interferencia de ARN , Receptores de Superficie Celular/genética , Transducción de Señal/genética
16.
PLoS One ; 7(12): e52258, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284959

RESUMEN

Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF), followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.


Asunto(s)
Proteínas Quimerinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Línea Celular , Quimerina 1/metabolismo , Perros , Factor de Crecimiento de Hepatocito/farmacología , Microscopía Confocal , Reacción en Cadena de la Polimerasa
17.
Nat Neurosci ; 15(1): 39-47, 2011 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-22138645

RESUMEN

Disrupted cortical neuronal migration is associated with epileptic seizures and developmental delay. However, the molecular mechanism by which disruptions of early cortical development result in neurological symptoms is poorly understood. Here we report α2-chimaerin as a key regulator of cortical neuronal migration and function. In utero suppression of α2-chimaerin arrested neuronal migration at the multipolar stage, leading to accumulation of ectopic neurons in the subcortical region. Mice with such migration defects showed an imbalance between excitation and inhibition in local cortical circuitry and greater susceptibility to convulsant-induced seizures. We further show that α2-chimaerin regulates bipolar transition and neuronal migration through modulating the activity of CRMP-2, a microtubule-associated protein. These findings establish a new α2-chimaerin-dependent mechanism underlying neuronal migration and proper functioning of the cerebral cortex and provide insights into the pathogenesis of seizure-related neurodevelopmental disorders.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Quimerina 1/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Corteza Cerebral/embriología , Quimerina 1/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
18.
Hum Mol Genet ; 20(24): 4797-809, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21926414

RESUMEN

Mutations of the Interleukin-1-receptor accessory protein like 1 (IL1RAPL1) gene are associated with cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of IL1/Toll receptors, which is localized at excitatory synapses and interacts with PSD-95. We previously showed that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling c-Jun N-terminal kinase activity and PSD-95 phosphorylation. Here, we show that the IgG-like extracellular domains of IL1RAPL1 induce excitatory pre-synapse formation by interacting with protein tyrosine phosphatase delta (PTPδ). We also found that IL1RAPL1 TIR domains interact with RhoGAP2, which is localized at the excitatory post-synaptic density. More interestingly, the IL1RAPL1/PTPδ complex recruits RhoGAP2 at excitatory synapses to induce dendritic spine formation. We also found that the IL1RAPL1 paralog, IL1RAPL2, interacts with PTPδ and induces excitatory synapse and dendritic spine formation. The interaction of the IL1RAPL1 family of proteins with PTPδ and RhoGAP2 reveals a pathophysiological mechanism of cognitive impairment associated with a novel type of trans-synaptic signaling that regulates excitatory synapse and dendritic spine formation.


Asunto(s)
Quimerina 1/metabolismo , Genes Ligados a X , Discapacidad Intelectual/genética , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sinapsis/metabolismo , Animales , Células COS , Chlorocebus aethiops , Análisis por Conglomerados , Espinas Dendríticas/metabolismo , Células HEK293 , Humanos , Proteína Accesoria del Receptor de Interleucina-1/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas
19.
BMC Neurosci ; 12: 70, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21767388

RESUMEN

BACKGROUND: In cat visual cortex, critical period neuronal plasticity is minimal until approximately 3 postnatal weeks, peaks at 5 weeks, gradually declines to low levels at 20 weeks, and disappears by 1 year of age. Dark rearing slows the entire time course of this critical period, such that at 5 weeks of age, normal cats are more plastic than dark reared cats, whereas at 20 weeks, dark reared cats are more plastic. Thus, a stringent criterion for identifying genes that are important for plasticity in visual cortex is that they show differences in expression between normal and dark reared that are of opposite direction in young versus older animals. RESULTS: The present study reports the identification by differential display PCR of a novel gene, α-chimaerin, as a candidate visual cortex critical period plasticity gene that showed bidirectional regulation of expression due to age and dark rearing. Northern blotting confirmed the bidirectional expression and 5'RACE sequencing identified the gene. There are two alternatively-spliced α-chimaerin isoforms: α1 and α2. Western blotting extended the evidence for bidirectional regulation of visual cortex α-chimaerin isoform expression to protein in cats and mice. α1- and α2-Chimaerin were elevated in dark reared compared to normal visual cortex at the peak of the normal critical period and in normal compared to dark reared visual cortex at the nadir of the normal critical period. Analysis of variance showed a significant interaction in both cats and mice for both α-chimaerin isoforms, indicating that the effect of dark rearing depended on age. This differential expression was not found in frontal cortex. CONCLUSIONS: Chimaerins are RhoGTPase-activating proteins that are EphA4 effectors and have been implicated in a number of processes including growth cone collapse, axon guidance, dendritic spine development and the formation of corticospinal motor circuits. The present results identify α-chimaerin as a candidate molecule for a role in the postnatal critical period of visual cortical plasticity.


Asunto(s)
Envejecimiento/fisiología , Quimerina 1/metabolismo , Período Crítico Psicológico , Plasticidad Neuronal/genética , Corteza Visual/fisiología , Animales , Gatos , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Especificidad de la Especie
20.
J Biol Chem ; 286(1): 199-207, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21056981

RESUMEN

α1-Chimaerin is a neuron-specific member of the Rho GTPase-activating protein family that selectively inactivates the small GTPase Rac. It is known to regulate the structure of dendrites and dendritic spines. We describe here that under basal conditions α1-chimaerin becomes polyubiquitinated and undergoes rapid proteasomal degradation. This degradation is partly dependent on the N-terminal region that is unique to this isoform. Mimicking diacylglycerol (DAG) signaling with a phorbol ester stabilizes endogenous α1-chimaerin against degradation and causes accumulation of the protein. The stabilization requires phorbol ester binding via the C1 domain of the protein and is independent of PKC activity. In addition, overexpression of a constitutively active Rac1 mutant is sufficient to cause an accumulation of α1-chimaerin through a phospholipase C-dependent mechanism, showing that endogenous DAG signaling can also stabilize the protein. These results suggest that signaling via DAG may regulate the abundance of α1-chimaerin under physiological conditions, providing a new model for understanding how its activity could be controlled.


Asunto(s)
Quimerina 1/química , Quimerina 1/metabolismo , Diglicéridos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Neuronas/efectos de los fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Acetato de Tetradecanoilforbol/farmacología , Ubiquitina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...