Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.718
1.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Article En | MEDLINE | ID: mdl-38711396

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Chitin , Chitinases , Insect Proteins , Insecticides , Molecular Docking Simulation , Moths , Zea mays , Animals , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Moths/enzymology , Moths/drug effects , Moths/genetics , Chitin/chemistry , Chitin/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Zea mays/chemistry , Zea mays/parasitology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Design , Insect Control , Larva/growth & development , Larva/drug effects , Structure-Activity Relationship
2.
Nat Commun ; 15(1): 3733, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740737

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry. Here we show that bristle formation requires a chitin-producing enzyme specifically expressed in the chaetoblasts. Chaetoblasts exhibit dynamic cell surfaces with stereotypical patterns of actin-rich microvilli. These microvilli can be matched with internal and external structures of bristles reconstructed from serial block-face electron micrographs. Individual chitin teeth are deposited by microvilli in an extension-disassembly cycle resembling a biological 3D printer. Consistently, pharmacological interference with actin dynamics leads to defects in tooth formation. Our study reveals that both material and shape of bristles are encoded by the same cell, and that microvilli play a role in micro- to submicrometric sculpting of biomaterials.


Chitin , Microvilli , Microvilli/ultrastructure , Animals , Chitin/metabolism , Chitin/chemistry , Polychaeta/ultrastructure , Actins/metabolism , Morphogenesis
3.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709299

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Bacteria , Sewage , Wastewater , Biopolymers/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Sewage/microbiology , Wastewater/microbiology , Lignin/metabolism , Microscopy, Electron, Scanning , Cellulose/metabolism , Biofilms/growth & development , Chitin/metabolism , Nitrification , Water Purification/methods
4.
Microb Cell Fact ; 23(1): 126, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698402

BACKGROUND: Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to  evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by  response surface methodology (RSM) which delvs  into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers. RESULTS: In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts. CONCLUSIONS: The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.


Biodegradation, Environmental , Chitinases , Chitosan , Oligosaccharides , Recombinant Proteins , Chitinases/metabolism , Chitinases/genetics , Oligosaccharides/metabolism , Animals , Chitosan/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Chitin/metabolism , Hydrocarbons/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Crustacea/metabolism , Emulsifying Agents/metabolism , Emulsifying Agents/chemistry
5.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38574729

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Chitin , Chitosan , Medicago truncatula , Mycorrhizae , Plant Proteins , Symbiosis , Mycorrhizae/physiology , Chitin/metabolism , Medicago truncatula/microbiology , Medicago truncatula/metabolism , Medicago truncatula/immunology , Medicago truncatula/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Immunity , Oligosaccharides/metabolism , Plant Roots/microbiology , Plant Roots/metabolism
6.
Mar Biotechnol (NY) ; 26(2): 351-363, 2024 Apr.
Article En | MEDLINE | ID: mdl-38498104

Light is an essential ecological factor that has been demonstrated to affect aquatic animals' behavior, growth performance, and energy metabolism. Our previous study found that the full-spectrum light and cyan light could promote growth performance and molting frequency of Scylla paramamosain while it was suppressed by violet light. Hence, the purpose of this study is to investigate the underlying molecular mechanism that influences light spectral composition on the growth performance and molting of S. paramamosain. RNA-seq analysis and qPCR were employed to assess the differentially expressed genes (DEGs) of eyestalks from S. paramamosain reared under full-spectrum light (FL), violet light (VL), and cyan light (CL) conditions after 8 weeks trial. The results showed that there are 5024 DEGs in FL vs. VL, 3398 DEGs in FL vs. CL, and 3559 DEGs in VL vs. CL observed. GO analysis showed that the DEGs enriched in the molecular function category involved in chitin binding, structural molecular activity, and structural constituent of cuticle. In addition, the DEGs in FL vs. VL were mainly enriched in the ribosome, amino sugar and nucleotide sugar metabolism, lysosome, apoptosis, and antigen processing and presentation pathways by KEGG pathway analysis. Similarly, ribosome, lysosome, and antigen processing and presentation pathways were major terms that enriched in FL vs. CL group. However, only the ribosome pathway was significantly enriched in up-regulated DEGs in VL vs. CL group. Furthermore, five genes were randomly selected from DEGs for qPCR analysis to validate the RNA-seq data, and the result showed that there was high consistency between the RNA-seq and qPCR. Taken together, violet light exposure may affect the growth performance of S. paramamosain by reducing the ability of immunity and protein biosynthesis, and chitin metabolism.


Brachyura , Chitin , Gene Expression Profiling , Light , Molting , Transcriptome , Animals , Chitin/metabolism , Molting/genetics , Brachyura/genetics , Brachyura/metabolism , Brachyura/growth & development
7.
Sci Total Environ ; 922: 171409, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38432367

Arsenic (As) is a widespread metalloid with well-known toxicity. To date, numerous studies have focused on individual level toxicity (e.g., growth and reproduction) of As to typical invertebrate springtails in soils, however, the molecular level toxicity and mechanism was poorly understood. Here, an integrated transcriptomics and metabolomics approach was used to reveal responses of Folsomia candida exposed to As(V) of 10 and 60 mg kg-1 at which the individual level endpoints were influenced. Transcriptomics identified 5349 and 4020 differentially expressed genes (DEGs) in low and high concentration groups, respectively, and the most DEGs were down-regulated. Enrichment analysis showed that low and high concentrations of As(V) significantly inhibited chromatin/chromosome-related biological processes (chromatin/chromosome organization, nucleosome assembly and organization, etc.) in springtails. At high concentration treatment, structural constituent of cuticle, chitin metabolic process and peptidase activity (serine-type peptidase activity, endopeptidase activity, etc.) were inhibited or disturbed. Moreover, the apoptosis pathway was significantly induced. Metabolomics analysis identified 271 differential changed metabolites (DCMs) in springtails exposed to high concentration of As. Steroid hormone biosynthesis was the most significantly affected pathway. Several DCMs that related to chitin metabolism could further support above transcriptomic results. These findings further extended the knowledge of As toxic mechanisms to soil fauna and offer important information for the environmental risk assessment.


Arsenic , Arthropods , Soil Pollutants , Animals , Arsenic/metabolism , Soil Pollutants/metabolism , Gene Expression Profiling , Metabolomics , Chromatin/metabolism , Peptide Hydrolases/metabolism , Chitin/metabolism , Soil/chemistry
8.
Insect Biochem Mol Biol ; 168: 104089, 2024 May.
Article En | MEDLINE | ID: mdl-38485097

In insects, cuticle proteins interact with chitin and chitosan of the exoskeleton forming crystalline, amorphic or composite material structures. The biochemical and mechanical composition of the structure defines the cuticle's physical properties and thus how the insect cuticle behaves under mechanical stress. The tissue-specific ratio between chitin and chitosan and its pattern of deacetylation are recognized and interpreted by cuticle proteins depending on their local position in the body. Despite previous research, the assembly of the cuticle composites in time and space including its functional impact is widely unexplored. This review is devoted to the genetics underlying the temporal and spatial distribution of elastic proteins and the potential function of elastic proteins in insects with a focus on Resilin in the fruit fly Drosophila. The potential impact and function of localized patches of elastic proteins is discussed for movements in leg joints, locomotion and damage resistance of the cuticle. We conclude that an interdisciplinary research approach serves as an integral example for the molecular mechanisms of generation and interpretation of the chitin/chitosan matrix, not only in Drosophila but also in other arthropod species, and might help to synthesize artificial material composites.


Chitosan , Animals , Chitin/metabolism , Insecta/genetics , Insecta/metabolism , Insect Proteins/metabolism , Drosophila/metabolism , Locomotion , Genetic Background
9.
Insect Biochem Mol Biol ; 168: 104111, 2024 May.
Article En | MEDLINE | ID: mdl-38508343

The insect cuticle is a non-cellular matrix composed of polysaccharide chitins and proteins. The cuticle covers most of the body surface, including the trachea, foregut, and hindgut, and it is the body structure that separates the intraluminal environment from the external environment. The cuticle is essential to sustain their lives, both as a physical barrier to maintain homeostasis and as an exoskeleton that mechanically supports body shape and movement. Previously, we proposed a theory about the possibility that the cuticle-forming system contributes to the "evolution and success of insects." The main points of our theory are that 1) insects evolved an insect-specific system of cuticle formation and 2) the presence of this system may have provided insects with a competitive advantage in the early land ecosystems. The key to this theory is that insects utilize molecular oxygen abundant in the atmosphere, which differs from closely related crustaceans that form their cuticles with calcium ions. With newly obtained knowledge, this review revisits the significance of the insect-specific system for insects to adapt to terrestrial environments and also discusses the long-standing question in entomology as to why, despite their great success in terrestrial environments, they poorly adapt to marine environments.


Ecosystem , Oxidoreductases , Animals , Oxidoreductases/metabolism , Insecta/genetics , Insecta/metabolism , Chitin/metabolism
10.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Article En | MEDLINE | ID: mdl-38431420

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Chitosan , Liquid Crystals , Animals , Chitosan/chemistry , Hydrogels/pharmacology , Hydrogels/metabolism , Chitin/pharmacology , Chitin/metabolism , Vibrissae , Tissue Scaffolds/chemistry , Bone Regeneration , Tissue Engineering , Osteogenesis , Extracellular Matrix/metabolism , Anti-Bacterial Agents/pharmacology
11.
Pestic Biochem Physiol ; 199: 105798, 2024 Feb.
Article En | MEDLINE | ID: mdl-38458668

Spiders, the major predatory enemies of insect pests in fields, are vulnerable to insecticides. In this study, we observed that the recommended dose of buprofezin delayed the molting of the pond wolf spider Pardosa pseudoannulata, although it had no lethal effect on the spiders. Since buprofezin is an insect chitin biosynthesis inhibitor, we identified two chitin synthase genes (PpCHS1 and PpCHS2) in P. pseudoannulata. Tissue-specific expression profiling showed that PpCHS1 was most highly expressed in cuticle. In contrast, PpCHS2 showed highest mRNA levels in the midgut and fat body. RNAi knockdown of PpCHS1 significantly delayed the molting of 12-days old spiderlings, whereas no significant effect on the molting was observed in the PpCHS2-silencing spiderlings. The expression of PpCHS1 was significantly suppressed in the spiderlings treated with buprofezin, but rescued by exogenous ecdysteroid ponasterone A (PA). Consistent with this result, the molting delay caused by buprofezin was also rescued by PA. The results revealed that buprofezin delayed the molting of spiders by suppressing PpCHS1 expression, which will benefit the protection of P. pseudoannulate and related spider species.


Animals, Poisonous , Chitin Synthase , Spiders , Thiadiazines , Animals , Chitin Synthase/genetics , Chitin Synthase/metabolism , Molting/genetics , Insecta , Spiders/genetics , Spiders/metabolism , Chitin/metabolism
12.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38490739

Fish are the most edible protein source worldwide and generate several remnants such as scales, viscera, head, bone, and skin. Fish wastes are not disposed of properly, which adversely affects the environment, especially the water bodies where fish processing industries dispose of their waste. Fish waste mainly contains nitrogen, oil, fat, salts, heavy metals, and organic compounds, which increase the biological oxygen demand and chemical oxygen demand. Fish waste can degrade in various ways, such as physicochemical or by enzymatic action, but using microbes is an environmentally friendly approach that can provide valuable compounds such as products such as collagen, chitin, minerals, and fish protein concentrates. This review is designed to focus on the suitability of microbes as tools for fish waste degradation and the production of certain associated. This study also provides insight into the production of other compounds such as protease, chitinase, and chitin applicability of these products. After processing, fish waste as a microbial growth media for enzyme production since microorganisms synthesize enzymes such as proteases, protein hydrolysates, lipids, and chitinase, which have broader applications in the pharmaceutical, cosmetic, biomedical material, and food processing industries.


Chitinases , Fishes , Animals , Biodegradation, Environmental , Food-Processing Industry , Chitin/chemistry , Chitin/metabolism , Peptide Hydrolases
13.
Cell Host Microbe ; 32(3): 425-440.e7, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38309260

In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5ß (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5ß contributes to the activation of DGK5ß to produce PA. These findings suggest that DGK5ß-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.


Arabidopsis Proteins , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Phosphatidic Acids/metabolism , NADPH Oxidases/genetics , Plant Immunity/genetics , Chitin/metabolism , Gene Expression Regulation, Plant
14.
Appl Spectrosc ; 78(4): 355-364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38378014

The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, ß-1,3- and ß-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of ß-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 µm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the ß-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.


Saccharomyces cerevisiae Proteins , beta-Glucans , beta-Glucans/analysis , Cell Wall/chemistry , Chitin/analysis , Chitin/metabolism , Glucans/analysis , Glucans/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Spectroscopy, Fourier Transform Infrared
15.
J Hazard Mater ; 468: 133771, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38364581

The ubiquitous presence of microplastics (MPs) in aquatic environments poses a significant threat to crustaceans. Although exoskeleton quality is critical for crustacean survival, the impact of MPs on crustacean exoskeletons remains elusive. Our study represents a pioneering effort to characterize the effects of MPs exposure on crustacean exoskeletons. In this study, the mechanical properties of whiteleg shrimp Litopenaeus vannamei exoskeletons were analyzed after exposure to environmentally realistic levels of MPs. Nanoindentation data demonstrated that MPs exposure significantly increased the hardness and modulus of both the carapace and abdominal segments of L. vannamei. Moreover, fractures and embedded MPs were detected on the exoskeleton surface using SEM-EDS analysis. Further analysis demonstrated that the degree of chitin acetylation (DA) in the shrimp exoskeleton, as indicated by FTIR peaks, was reduced by MPs exposure. In addition, exposure to MPs significantly inhibited the muscle Ca2+-ATPase activity and hemolymph calcium levels. Transcriptome and metabolome analyses revealed that the expression levels of genes encoding key enzymes and metabolites in the chitin biosynthetic pathway were significantly affected by MPs exposure. In conclusion, MPs at environmentally relevant concentrations may affect the exoskeletal mechanical properties of L. vannamei through a comprehensive mechanism involving the disruption of the crystalline structure of chitin, assimilation into the exoskeleton, and dysregulation of exoskeleton biosynthesis-related pathways.


Microplastics , Penaeidae , Animals , Microplastics/metabolism , Plastics/metabolism , Penaeidae/genetics , Penaeidae/metabolism , Transcriptome , Chitin/metabolism
16.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38397062

The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.


Alternaria , Arabidopsis Proteins , Arabidopsis , Plant Immunity , Alternaria/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chitin/metabolism , Gene Expression Regulation, Plant , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Med Mycol ; 62(3)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38389246

Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans ß-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW ß-glucan, and a commercial ß-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW ß-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by ß-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW ß-glucan and chitin with mannan masked in a time-dependent manner. SH-induced ß-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW ß-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.


Alkanes , Candida albicans , Sulfites , beta-Glucans , Humans , Antifungal Agents/therapeutic use , beta-Glucans/pharmacology , Interleukin-10/metabolism , Interleukin-10/pharmacology , Tumor Necrosis Factor-alpha , Mannans , Phagocytosis , Chitin/metabolism , Cell Wall/metabolism
18.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Article En | MEDLINE | ID: mdl-38299379

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Chitin , Flowers , Hypocreales , Oryza , Plant Diseases , Oryza/microbiology , Oryza/metabolism , Oryza/genetics , Plant Diseases/microbiology , Chitin/metabolism , Flowers/microbiology , Hypocreales/pathogenicity , Hypocreales/genetics , Hypocreales/metabolism , Signal Transduction , Host-Pathogen Interactions , Plant Proteins/metabolism , Plant Proteins/genetics , Virulence , Virulence Factors/metabolism , Virulence Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
19.
J Agric Food Chem ; 72(5): 2482-2491, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38264997

In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture. From an overall of 20 fungal CDA inhibitors, six showed to be active against Caenorhabditis elegans. These experimental results made it possible to develop two new molecular topology-based QSAR algorithms for the rational design of potential nematicides with CDA inhibitor activity for crop protection. Linear discriminant analysis was employed to create the two algorithms, one for identifying the chemo-mathematical pattern of commercial nematicides and the other for identifying nematicides with activity on CDA. After creating and validating the QSAR models, the authors screened several natural and synthetic compound databases, searching for alternatives to current nematicides. Finally one compound, the N2-(dimethylsulfamoyl)-N-{2-[(2-methyl-2-propanyl)sulfanyl]ethyl}-N2-phenylglycinamide or nematode chitin deacetylase inhibitor, was selected as the best candidate and was further investigated both in silico, through molecular docking and molecular dynamic simulations, and in vitro, through specific experimental assays. The molecule shows favorable binding behavior on the catalytic pocket of C. elegans CDA and the experimental assays confirm potential nematicide activity.


Amidohydrolases , Caenorhabditis elegans , Nematoda , Animals , Caenorhabditis elegans/metabolism , Molecular Docking Simulation , Antinematodal Agents/chemistry , Chitin/metabolism
20.
Insect Biochem Mol Biol ; 166: 104087, 2024 Mar.
Article En | MEDLINE | ID: mdl-38295884

Chitinases (CHT) comprise a large gene family in insects and have been classified into at least eleven subgroups. Many studies involving RNA interference (RNAi) have demonstrated that depletion of group I (CHT5s) and group II (CHT10s) CHT transcripts causes lethal molting arrest in several insect species including the red flour beetle, Tribolium castaneum, presumably due to failure of degradation of chitin in their old cuticle. In this study we investigated the functions of CHT5 and CHT10 in turnover of chitinous cuticle in T. castaneum during embryonic and post-embryonic molting stages. RNAi and transmission electron microscopic (TEM) analyses indicate that CHT10 is required for cuticular chitin degradation at each molting period analyzed, while CHT5 is essential for pupal-adult molting only. We further analyzed the functions of these genes during embryogenesis in T. castaneum. Real-time qPCR analysis revealed that peak expression of CHT10 occurred prior to that of CHT5 during embryonic development as has been observed at post-embryonic molting periods in several other insect species. With immunogold-labeling TEM analysis using a fluorescein isothiocyanate-conjugated chitin-binding domain protein (FITC-CBD) probe, chitin was detected in the serosal cuticle but not in any other regions of the eggshell including the chorion and vitelline membrane layers. Injection of double-stranded RNA (dsRNA) for CHT5 (dsCHT5), CHT10 (dsCHT10) or their co-injection (dsCHT5/10) into mature adult females had no effect on their fecundity and the resulting embryos developed normally inside the egg. There were no obvious differences in the morphology of the outer chorion, inner chorion and vitelline membrane among eggs from these dsRNA-treated females. However, unlike dsCHT5 eggs, dsCHT10 and dsCHT5/10 eggs exhibited failure of turnover of the serosal cuticle in which the horizontal chitinous laminae remained intact, resulting in lethal embryo hatching defects. These results indicate that group I CHT5 is essential for pupal-adult molting, whereas group II CHT10 plays an essential role in cuticular chitin degradation in T. castaneum during both embryonic hatching and all of the post-embryonic molts. CHT10 can serve in place of CHT5 in chitin degradation, except during the pupal-adult molt when both enzymes are indispensable to complete eclosion.


Chitinases , Coleoptera , Tribolium , Female , Animals , Tribolium/metabolism , Coleoptera/metabolism , Chitinases/genetics , Chitinases/metabolism , Chitin/metabolism , Molting/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
...