Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Chemosphere ; 344: 140382, 2023 Dec.
Article En | MEDLINE | ID: mdl-37806328

Residual chlorine and biofilm coexistence is inevitable in drinking water transmission and distribution networks. Understanding the microbial response and its mediated effects on disinfection byproducts under different categories of residual chlorine stress is essential to ensure water safety. The aim of our study was to determine the response of pipe wall biofilms to residual chlorine pressure in chlorine and chloramine systems and to understand the microbially mediated effects on the formation and migration of haloacetonitriles (HANs), typical nitrogenous disinfection byproducts. According to the experimental results, the biofilm response changes under pressure, with significant differences noted in morphological characteristics, the extracellular polymeric substances (EPS) spatial structure, bacterial diversity, and functional abundance potential. Upon incubation with residual chlorine (1.0 ± 0.2 mg/L), the biofilm biomass per unit area, EPS, community abundance, and diversity increased in the chloramine group, and the percentage of viable bacteria increased, potentially indicating that the chloramine group provides a richer variety of organic matter precursors. Compared with the chloramine group, the chlorination group exhibited increased haloacetonitrile formation potential (HANFP), with Rhodococcus (43.2%) dominating the system, whereas the prediction abundance of metabolic functions was advantageous, especially with regard to amino acid metabolism, carbohydrate metabolism, and the biodegradation and metabolism of foreign chemicals. Under chlorine stress, pipe wall biofilms play a stronger role in mediating HAN production. It is inferred that chlorine may stimulates microbial interactions, and more metabolites (e.g., EPS) consume chlorine to protect microbial survival. EPS dominates in biofilms, in which proteins exhibit greater HANFP than polysaccharides.


Disinfectants , Drinking Water , Water Purification , Disinfection , Chloramines/pharmacology , Chloramines/metabolism , Chlorine/pharmacology , Chlorine/metabolism , Water Supply , Drinking Water/chemistry , Bacteria/metabolism , Biofilms , Water Purification/methods , Disinfectants/pharmacology , Disinfectants/metabolism
2.
Bull Exp Biol Med ; 175(2): 201-204, 2023 Jun.
Article En | MEDLINE | ID: mdl-37466859

We studied the properties of N6-chloroadenosine phosphates (ATP, ADP, and AMP chloramines) as compounds with potentially increased antiplatelet efficacy determined by their binding to the plasma membrane of platelets. Chloramine derivatives of ATP, ADP, and AMP do not differ in their optical absorption characteristics: their absorption spectra are in the range of 220-340 nm with a maximum at 264 nm. Chloramines of adenosine phosphates are characterized by high reactivity with respect to thiol compounds. In particular, the rate constants of the reaction of N6-chloroadenosine-5'-diphosphate with N-acetylcysteine, reduced glutathione, dithiothreitol, and cysteine reach 59,000, 250,000, 340,000, and 1,250,000 M-1×sec-1, respectively, and only 1.10±0.02 M-1×sec-1 with methionine. It has been found that N6-chloradenosine-5'-triphosphate is a strong inhibitor of platelet functions: it effectively suppresses ADP-induced cell aggregation (IC50 in the whole blood is 5 µM) and inhibits aggregation of preactivated platelets and induces dissociation of their aggregates.


Chloramines , Platelet Aggregation , Chloramines/pharmacology , Chloramines/chemistry , Chloramines/metabolism , Sulfur Compounds/metabolism , Sulfur Compounds/pharmacology , Blood Platelets , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Sulfur/pharmacology , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology
3.
Free Radic Biol Med ; 192: 152-164, 2022 11 01.
Article En | MEDLINE | ID: mdl-36152914

Histones are critical for the packaging of nuclear DNA and chromatin assembly, which is facilitated by the high abundance of Lys and Arg residues within these proteins. These residues are also the site of a range of post-translational modifications, which influence the regulatory function of histones. Histones are also present in the extracellular environment, following release by various pathways, particularly neutrophil extracellular traps (NETs). NETs contain myeloperoxidase, which retains its enzymatic activity and produces hypochlorous acid (HOCl). This suggests that histones could be targets for HOCl under conditions where aberrant NET release is prevalent, such as chronic inflammation. In this study, we examine the reactivity of HOCl with a mixture of linker (H1) and core (H2A, H2B, H3 and H4) histones. HOCl modified the histones in a dose- and time-dependent manner, resulting in structural changes to the proteins and the formation of a range of post-translational modification products. N-Chloramines are major products following exposure of the histones to HOCl and decompose over 24 h forming Lys nitriles and carbonyls (aminoadipic semialdehydes). Chlorination and dichlorination of Tyr, but not Trp residues, is also observed. Met sulfoxide and Met sulfones are formed, though these oxidation products are also detected albeit at a lower extent, in the non-treated histones. Evidence for histone fragmentation and aggregation was also obtained. These results could have implications for the development of chronic inflammatory diseases, given the key role of Lys residues in regulating histone function.


Hypochlorous Acid , Oxidants , Chloramines/metabolism , DNA , Histones , Hypochlorous Acid/metabolism , Nitriles , Peroxidase/metabolism , Sulfones , Sulfoxides
4.
Chemosphere ; 238: 124526, 2020 Jan.
Article En | MEDLINE | ID: mdl-31466002

In this paper, for the first time, we show in chloraminated systems, the chloramine decaying proteins (CDP) play an important role in bulk water and biomass (biofilm) in resisting disinfectant. Extracellular polymeric substances in biofilm/biomass are known to protect microbes from disinfectants and toxic materials, but the exact mechanism(s) is/are not known. Starting with the seed from a nitrifying chloraminated reactor, two 5 L reactors were fed intermittently with either chloramine or ammonia containing nutrient solution. The degree of nitrification increased with time in both reactors despite an increase in soluble CDP in the chloraminated reactor, while soluble CDP decreased in the ammoniated one. The suspended biomass collected after eight months of operation from chloraminated reactor contained CDP and responded to short-term chloramine stress (1.5 h with initial 1.5 mg-Cl2·L-1) by the additional production of soluble CDP. The suspended biomass from ammoniated reactor neither contained CDP nor produced soluble CDP as a stress response. The production, release and accumulation of CDP in biomass (biofilm) could be one of several mechanisms microbes use to defend against disinfectants (stress). The new understanding will pave the way for better disinfection management and better design of experiments.


Biofilms , Biomass , Bioreactors/microbiology , Chloramines/metabolism , Chloramines/pharmacology , Proteins/metabolism , Stress, Physiological/drug effects , Ammonia/metabolism , Biofilms/drug effects , Disinfectants/pharmacology , Nitrification
5.
Neuroscience ; 399: 135-145, 2019 02 10.
Article En | MEDLINE | ID: mdl-30593920

Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), endogenously produced during metabolism, which acts as a second messenger. In skeletal muscles, hypoxia- or hyperthermia-induced increase in H2O2 might affect synaptic transmission by targeting the most redox-sensitive presynaptic compartment (Giniatullin et al., 2006). However, the effects of H2O2 as a signal molecule have not previously been studied in different patterns of the synaptic activity. Here, using optical and microelectrode recording of synaptic vesicle exocytosis, we studied the use-dependent action of low concentrations of H2O2 and other oxidants in the mouse neuromuscular junction. We found that: (i) H2O2 at low micromole concentrations inhibited both spontaneous and evoked transmitter releases from the motor nerve terminals in a use-dependent manner, (ii) the antioxidant N-acetylcysteine (NAC) eliminated these depressant effects, (iii) the influence of H2O2 was not associated with lipid oxidation suggesting a pure signaling action, (iv) the intracellular oxidant Chloramine-T or (v) the glutathione depletion produced similar to H2O2 depressant effects. Taken together, our data revealed the effective inhibition of neurotransmitter release by ROS, which was proportional to the intensity of synaptic activity at the neuromuscular junction. The combination of various oxidants suggested an intracellular location for redox-sensitive sites responsible for modulation of the synaptic transmission in the skeletal muscle.


Hydrogen Peroxide/pharmacology , Neuromuscular Junction/drug effects , Oxidants/pharmacology , Synaptic Transmission/drug effects , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Chloramines/metabolism , Diaphragm/drug effects , Diaphragm/innervation , Diaphragm/metabolism , Dose-Response Relationship, Drug , Exocytosis/drug effects , Exocytosis/physiology , Female , Glutathione/metabolism , Male , Membrane Lipids/metabolism , Mice , Neuromuscular Junction/physiology , Phrenic Nerve/drug effects , Phrenic Nerve/metabolism , Reactive Oxygen Species/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/drug effects , Synaptic Vesicles/physiology , Tissue Culture Techniques , Tosyl Compounds/metabolism
6.
Chemosphere ; 212: 744-754, 2018 Dec.
Article En | MEDLINE | ID: mdl-30179839

Earlier, we reported on soluble microbial products-mediated chloramine decay in nitrifying waters. However, we neither separated the agent(s) nor identified the factors that enhanced the production of chloramine-decaying soluble microbial products (cSMPs). Experiments were conducted by feeding reactor sets (each consisting of five reactors connected in series) with treated water (3-8 mg-DOC.L-1) obtained from a water treatment plant. The reactors simulated various nitrifying conditions that are experienced in a chloraminated system. In unfiltered samples obtained from nitrified reactors, about 89-93% of the dosed chloramine decayed within 40 h. The cSMP-mediated decay accounted for 21-39% of all chloramine decay in the samples from 0 to 5 mg-C.L-1 fed reactors and 15% in the samples from 7 to 8 mg-C.L-1 fed reactors. Microbial processes (mediated by nitrifiers and/or heterotrophs) and biomass-associated microbial products (BMPs) in insoluble form accounted for 13-21% for the reactors fed with 0-5 mg-C.L-1 and 34% for those fed with 7-8 mg-C.L-1. The cSMPs were separable with a 30 kDa cut-off membrane but not with 50 or 100 kDa membranes, i.e., they were above 30 kDa but below 50 kDa in size, and were confirmed to be a protein(s). The protein(s) accelerated chloramine decay by accelerating chloramine auto-decomposition and nitrite oxidation. As opposed to the traditional belief, unknown factors accounted for approximately 34-53% in commonly encountered re-chloraminated nitrifying waters (2-5 mg-DOC.L-1). Understanding the identity and role of these factors - such as cSMPs, BMPs, heterotrophs - will lead to a better control of chloramine.


Bioreactors/microbiology , Chloramines/metabolism , Nitrification , Water Purification/methods , Biomass
7.
ACS Appl Mater Interfaces ; 10(37): 31168-31177, 2018 Sep 19.
Article En | MEDLINE | ID: mdl-30156819

Advanced technologies for controlled cell adhesion and detachment in novel biointerface designs profit from stimuli-responsive systems that are able to react to their environment. Here, a multilayer system made of thiolated chitosan and thiolated chondroitin sulfate was constructed, with the potential of switchable inter- and intramolecular thiol/disulfide interactions representing a redox-sensitive nanoplatform. Owing to the formation and cleavage of inherent disulfide bonds by oxidation and reduction, surface properties of the multilayer can be controlled toward protein adsorption/desorption and cell adhesion in a reversible manner. Oxidation of thiols by chloramine-T promotes fibronectin (FN) adsorption and fibroblast cell adhesion, whereas the reduction by tris(2-carboxyethyl)phosphine reverses these effects, leading to low FN adsorption and little cell adhesion and spreading. These effects on the biological systems are related to significant changes of wetting properties, zeta potential, and mechanical properties of these multilayer films. The system presented may be useful for biomedical applications as responsive and obedient surfaces in medical implants and support tissue regeneration.


Cell Adhesion/drug effects , Chitosan/chemistry , Chondroitin Sulfates/chemistry , Fibroblasts/drug effects , Adsorption , Cells, Cultured , Chloramines/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Humans , Oxidation-Reduction , Sulfhydryl Compounds/chemistry , Surface Properties , Tosyl Compounds/metabolism
8.
Free Radic Biol Med ; 113: 363-371, 2017 12.
Article En | MEDLINE | ID: mdl-29055823

The neutrophil enzyme, myeloperoxidase, by converting hydrogen peroxide (H2O2) and chloride to hypochlorous acid (HOCl), provides important defense against ingested micro-organisms. However, there is debate about how efficiently HOCl is produced within the phagosome and whether its reactions with phagosomal constituents influence the killing mechanism. The phagosome is a small space surrounding the ingested organism, into which superoxide, H2O2 and high concentrations of proteins from cytoplasmic granules are released. Previous studies imply that HOCl is produced in the phagosome, but a large proportion should react with proteins before reaching the microbe. To mimic these conditions, we subjected neutrophil granule extract to sequential doses of H2O2. Myeloperoxidase in the extract converted all the H2O2 to HOCl, which reacted with the granule proteins. 3-Chlorotyrosine, protein carbonyls and large amounts of chloramines were produced. At higher doses of H2O2, the extract developed potent bactericidal activity against Staphylococcus aureus. This activity was due to ammonia monochloramine, formed as a secondary product from protein chloramines and dichloramines. Isolated myeloperoxidase and elastase also became bactericidal when modified with HOCl and antibacterial activity was seen with a range of species. Comparison of levels of protein modification in the extract and in phagosomes implies that a relatively low proportion of phagosomal H2O2 would be converted to HOCl, but there should be sufficient for substantial protein chloramine formation and some breakdown to ammonia monochloramine. It is possible that HOCl could kill ingested bacteria by an indirect mechanism involving protein oxidation and monochloramine formation.


Anti-Bacterial Agents/metabolism , Chloramines/metabolism , Cytoplasmic Granules/drug effects , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/metabolism , Leukocyte Elastase/metabolism , Peroxidase/metabolism , Anti-Bacterial Agents/pharmacology , Burkholderia cepacia/drug effects , Burkholderia cepacia/growth & development , Chloramines/pharmacology , Complex Mixtures/chemistry , Cytoplasmic Granules/chemistry , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Hypochlorous Acid/pharmacology , Kinetics , Leukocyte Elastase/isolation & purification , Microbial Viability/drug effects , Neutrophils/chemistry , Peroxidase/isolation & purification , Primary Cell Culture , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Streptococcus/drug effects , Streptococcus/growth & development
9.
Colloids Surf B Biointerfaces ; 148: 511-517, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27690239

As one of the most powerful biocides, N-halamine based antimicrobial materials have attracted much interest due to their non-toxicity, rechargeability, and rapid inactivation against a broad range of microorganisms. In this study, novel titanium dioxide-ADMH core-shell nanoparticles [TiO2@poly (ADMH-co-MMA) NPs] were prepared via miniemulsion polymerization using 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA) with nano-TiO2. The produced nanoparticles were characterized by FT-IR, TEM, TGA, and XPS. The UV stability of N-halamine nanoparticles has been improved with the addition of titanium dioxide. After chlorination treatment by sodium hypochlorite, biocidal efficacies of the chlorinated nanoparticles against S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) were determined. The nanoparticles showed excellent antimicrobial properties against bacteria within brief contact time. In addition, in vitro cell cytocompatibility tests showed that the antibacterial nanoparticles had good biocompatibility.


Amines/chemistry , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Chloramines/metabolism , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Halogenation , Hydantoins/chemistry , Methylmethacrylate/chemistry , Mice , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , NIH 3T3 Cells , Nanoparticles/radiation effects , Nanoparticles/ultrastructure , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Thermogravimetry , Ultraviolet Rays
10.
Annu Rev Biochem ; 85: 765-92, 2016 Jun 02.
Article En | MEDLINE | ID: mdl-27050287

Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling.


Chloramines/metabolism , Hydrogen Peroxide/metabolism , Hypochlorous Acid/metabolism , Neutrophils/immunology , Superoxides/metabolism , Thiocyanates/metabolism , Cell Membrane/drug effects , Cells, Cultured , Chloramines/immunology , Gene Expression , Humans , Hydrogen Peroxide/immunology , Hypochlorous Acid/immunology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , NADPH Oxidase 2 , NADPH Oxidases/genetics , NADPH Oxidases/immunology , Neutrophils/cytology , Neutrophils/drug effects , Oxidation-Reduction , Peroxidase/genetics , Peroxidase/immunology , Signal Transduction , Superoxides/immunology , Tetradecanoylphorbol Acetate/pharmacology , Thiocyanates/immunology , Zymosan/pharmacology
11.
Free Radic Res ; 50(5): 557-69, 2016.
Article En | MEDLINE | ID: mdl-26866566

In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 µg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 µg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.


Anthocyanins/metabolism , Antioxidants/metabolism , Oxidative Stress/drug effects , Wine/analysis , Anthocyanins/chemistry , Antioxidants/administration & dosage , Antioxidants/analysis , Chloramines/chemistry , Chloramines/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Humans , Oxidation-Reduction , Polyphenols/chemistry , Polyphenols/metabolism , Quercetin/chemistry , Quercetin/metabolism
12.
Water Res ; 88: 904-911, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26614969

Ammonia degradation was investigated in three batch reactors with differing initial concentrations of bacteria present in the same filtered water source based on pre-treatment filtration techniques. The potential for the bacterial community to degrade the ammonia present was determined in the absence of monochloramine, simulating a distribution system where a loss of disinfectant residual has occurred. Nitrification was observed in only one of the three batch reactors, whereas rapid microbiologically induced chloramine decay was present in two reactors. Results suggest that the microbial decay factor is not a valid tool for indication of nitrification, but may be used as an indicator of the occurrence of rapid monochloramine decay. Intact bacterial cell numbers did not to correlate with changes in ammonia, nitrite or nitrate concentrations and hence did not correlate with the nitrification observed. Neither use of the microbial decay factor or monitoring of ammonia oxidising prokaryotes provided an early indication for the occurrence of nitrification. Hence, monitoring of ammonia and nitrite would still be the most suitable tool for indicating nitrification.


Bacteria/metabolism , Chloramines/metabolism , Disinfection , Nitrification , Water Purification , Ammonia/metabolism , Biodegradation, Environmental
13.
Free Radic Biol Med ; 86: 259-68, 2015 Sep.
Article En | MEDLINE | ID: mdl-26057938

Hypochlorous acid (HOCl), an oxidant produced by myeloperoxidase (MPO), induces protein and lipid oxidation, which is implicated in the pathogenesis of atherosclerosis. Individuals with mildly elevated bilirubin concentrations (i.e., Gilbert syndrome; GS) are protected from atherosclerosis, cardiovascular disease, and related mortality. We aimed to investigate whether exogenous/endogenous unconjugated bilirubin (UCB), at physiological concentrations, can protect proteins/lipids from oxidation induced by reagent and enzymatically generated HOCl. Serum/plasma samples supplemented with exogenous UCB (≤250µM) were assessed for their susceptibility to HOCl and MPO/H2O2/Cl(-) oxidation, by measuring chloramine, protein carbonyl, and malondialdehyde (MDA) formation. Serum/plasma samples from hyperbilirubinemic Gunn rats and humans with GS were also exposed to MPO/H2O2/Cl(-) to: (1) validate in vitro data and (2) determine the relevance of endogenously elevated UCB in preventing protein and lipid oxidation. Exogenous UCB dose-dependently (P<0.05) inhibited HOCl and MPO/H2O2/Cl(-)-induced chloramine formation. Albumin-bound UCB efficiently and specifically (3.9-125µM; P<0.05) scavenged taurine, glycine, and N-α-acetyllysine chloramines. These results were translated into Gunn rat and GS serum/plasma, which showed significantly (P<0.01) reduced chloramine formation after MPO-induced oxidation. Protein carbonyl and MDA formation was also reduced after MPO oxidation in plasma supplemented with UCB (P<0.05; 25 and 50µM, respectively). Significant inhibition of protein and lipid oxidation was demonstrated within the physiological range of UCB, providing a hypothetical link to protection from atherosclerosis in hyperbilirubinemic individuals. These data demonstrate a novel and physiologically relevant mechanism whereby UCB could inhibit protein and lipid modification by quenching chloramines induced by MPO-induced HOCl.


Bilirubin/physiology , Chloramines/metabolism , Gilbert Disease/blood , Peroxidase/physiology , Animals , Bilirubin/pharmacology , Case-Control Studies , Female , Gilbert Disease/enzymology , Lipid Peroxidation , Male , Malondialdehyde/metabolism , Protective Factors , Rats, Gunn
14.
Water Res ; 68: 719-30, 2015 Jan 01.
Article En | MEDLINE | ID: mdl-25462776

In drinking water, monochloramine may promote ammonia­oxidizing bacteria (AOB) growth because of concurrent ammonia presence. AOB use (i) ammonia monooxygenase for biological ammonia oxidation to hydroxylamine and (ii) hydroxylamine oxidoreductase for biological hydroxylamine oxidation to nitrite. In addition, monochloramine and hydroxylamine abiotically react, providing AOB a potential benefit by removing the disinfectant (monochloramine) and releasing growth substrate (ammonia). Alternatively and because biological hydroxylamine oxidation supplies the electrons (reductant) required for biological ammonia oxidation, the monochloramine/hydroxylamine abiotic reaction represents a possible inactivation mechanism by consuming hydroxylamine and inhibiting reductant generation. To investigate the abiotic monochloramine and hydroxylamine reaction's impact on AOB activity, the current study used batch experiments with Nitrosomonas europaea (AOB pure culture), ammonia, monochloramine, and hydroxylamine addition. To decipher whether hydroxylamine addition benefitted N. europaea activity by (i) removing monochloramine and releasing free ammonia or (ii) providing an additional effect (possibly the aforementioned reductant source), a previously developed cometabolism model was coupled with an abiotic monochloramine and hydroxylamine model for data interpretation. N. europaea maintained ammonia oxidizing activity when hydroxylamine was added before complete ammonia oxidation cessation. The impact could not be accounted for by monochloramine removal and free ammonia release alone and was concentration dependent for both monochloramine and hydroxylamine. In addition, a preferential negative impact occurred for ammonia versus hydroxylamine oxidation. These results suggest an additional benefit of exogenous hydroxylamine addition beyond monochloramine removal and free ammonia release, possibly providing reductant generation.


Chloramines/chemistry , Disinfection/methods , Hydroxylamine/chemistry , Nitrosomonas europaea/growth & development , Algorithms , Ammonia/chemistry , Ammonia/metabolism , Chloramines/metabolism , Groundwater/chemistry , Groundwater/microbiology , Hydrogen-Ion Concentration , Hydroxylamine/metabolism , Kinetics , Models, Chemical , Nitrosomonas europaea/metabolism , Oxidation-Reduction , Time Factors , Water Purification/methods
15.
Bioorg Med Chem ; 22(22): 6422-9, 2014 Nov 15.
Article En | MEDLINE | ID: mdl-25438766

Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1µM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO/H2O2/HOCl/HOBr system.


Indazoles/chemistry , Peroxidase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Chloramines/chemistry , Chloramines/metabolism , Humans , Indazoles/metabolism , Molecular Docking Simulation , Peroxidase/metabolism , Protein Binding , Structure-Activity Relationship , Taurine/chemistry , Taurine/metabolism
16.
Chemosphere ; 117: 692-700, 2014 Dec.
Article En | MEDLINE | ID: mdl-25461936

Rectifying the accelerated chloramine decay after the onset of nitrification is a major challenge for water utilities that employ chloramine as a disinfectant. Recently, the evidence of soluble microbial products (SMPs) accelerating chloramine decay beyond traditionally known means was reported. After the onset of nitrification, with an intention to inactivate nitrifying bacteria and thus maintaining disinfectant residuals, breakpoint chlorination followed by re-chloramination is usually practiced by water utilities. However, what actually breakpoint chlorination does beyond known effects is not known, especially in light of the new finding of SMPs. In this study, experiments were conducted using severely nitrified chloraminated water samples (chloramine residuals <0.5 mg Cl2 L−1, nitrite residuals >0.1 mg N L−1 and an order of magnitude higher chloramine decay rate compared to normal decay) obtained from two laboratory scale systems operated by feeding natural organic matter (NOM) containing and NOM free waters. Results showed that the accelerated decay of chloramine as a result of SMPs can be eliminated by spiking higher free chlorine residuals (about 0.92 ± 0.03 to 1.16 ± 0.12 mg Cl2 L−1) than the stoichiometric requirement for breakpoint chlorination and nitrite oxidation. Further, accelerated initial chlorine decay showed chlorine preferentially reacts with nitrite and ammonia before destroying SMPs. This study, clearly demonstrated there is an additional demand from SMPs that needs to be satisfied to effectively recover disinfection residuals in subsequent re-chloramination.


Chloramines/metabolism , Chlorine/metabolism , Disinfectants/metabolism , Halogenation , Water Microbiology , Water Purification/methods , Ammonia/metabolism , Bacteria/metabolism , Nitrification , Nitrites/metabolism
17.
Free Radic Res ; 48(11): 1355-62, 2014 Nov.
Article En | MEDLINE | ID: mdl-25119650

The markers 3-nitrotyrosine and 3-chlorotyrosine are measured as surrogates for reactive nitrogen species and hypochlorous acid respectively, which are both elevated in inflamed human tissues. Previous studies reported a loss of 3-nitrotyrosine when exposed to hypochlorous acid, suggesting that observations of 3-nitrotyrosine underestimate the presence of reactive nitrogen species in diseased tissue (Whiteman and Halliwell, Biochemical and Biophysical Research Communications, 258, 168-172 (1999)). This report evaluates the significance of 3-nitrotyrosine loss by measuring the kinetics of the reaction between 3-nitrotyrosine and hypochlorous acid. The results demonstrate that 3-nitrotyrosine is chlorinated by hypochlorous acid or chloramines to form 3-chloro-5-nitrotyrosine. As 3-nitrotyrosine from in vivo samples is usually found within proteins rather than as free amino acid, we also examined the reaction of 3-nitrotyrosine modification in the context of peptides. The chlorination of 3-nitrotyrosine in peptides was observed to occur up to 700-fold faster than control reactions using equivalent amino acid mixtures. These results further advance our understanding of tyrosine chlorination and the use of 3-nitrotyrosine formed in vivo as a biomarker of reactive nitrogen species.


Chloramines/chemistry , Hypochlorous Acid/chemistry , Peptide Fragments/chemistry , Reactive Nitrogen Species/metabolism , Tyrosine/analogs & derivatives , Biomarkers/analysis , Chloramines/metabolism , Chromatography, High Pressure Liquid , Humans , Hypochlorous Acid/metabolism , Kinetics , Peptide Fragments/metabolism , Peroxidase/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
18.
Environ Sci Technol ; 48(7): 3832-9, 2014 Apr 01.
Article En | MEDLINE | ID: mdl-24575887

The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.


Biofilms , Chloramines/metabolism , Disinfection , Extracellular Matrix/metabolism , Biofilms/drug effects , Biomass , Biopolymers/pharmacology , Colony Count, Microbial , Disinfectants/metabolism , Extracellular Matrix/drug effects , Flow Cytometry , Microbial Viability/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology , Pseudomonas putida/drug effects , Pseudomonas putida/growth & development , Pseudomonas putida/physiology
19.
Cell Biochem Funct ; 32(2): 188-93, 2014 Mar.
Article En | MEDLINE | ID: mdl-23945995

The aim of this study was to assess a possible role of monochloramine (NH2 Cl), one of the reactive chlorine species, which induce oxidative stress, on the proliferation of colorectal cancer cell line Caco-2. At concentrations ranging from 10 to 200 µM, NH2 Cl (14-61% inhibition), but not hypochlorous acid, dose-dependently inhibited the cell viability of Caco-2 cells. Experiments utilizing methionine (a scavenger of NH2 Cl), taurine-chloramine and glutamine-chloramine revealed that only NH2 Cl affects the cancer cell proliferation among reactive chlorine species, with a relative specificity. Furthermore, flow-cytometry experiments showed that the anti-proliferative effect of NH2 Cl is partially attributable to both apoptosis and G2/M cell cycle arrest. These results suggest that NH2 Cl has the potential to suppress colorectal cancer cell proliferation.


Apoptosis/drug effects , Cell Proliferation/drug effects , Chloramines/pharmacology , Colorectal Neoplasms/pathology , G2 Phase Cell Cycle Checkpoints/drug effects , Caco-2 Cells , Chloramines/metabolism , Humans
20.
Water Res ; 47(13): 4701-9, 2013 Sep 01.
Article En | MEDLINE | ID: mdl-23770484

Chloramine is widely used in United States drinking water systems as a secondary disinfectant, which may promote the growth of nitrifying bacteria because ammonia is present. At the onset of nitrification, both nitrifying bacteria and their products exert a monochloramine demand, decreasing the residual disinfectant concentration in water distribution systems. This work investigated another potentially significant mechanism for residual disinfectant loss: monochloramine cometabolism by ammonia-oxidizing bacteria (AOB). Monochloramine cometabolism was studied with the pure culture AOB Nitrosomonas europaea (ATCC 19718) in batch kinetic experiments under drinking water conditions. Three batch reactors were used in each experiment: a positive control to estimate the ammonia kinetic parameters, a negative control to account for abiotic reactions, and a cometabolism reactor to estimate the cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. The cometabolism reactors showed a more rapid monochloramine decay than in the negative controls, demonstrating that cometabolism occurs. Cometabolism kinetics were best described by a pseudo first order model with a reductant term to account for ammonia availability. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30-60% of the observed monochloramine decay). These results suggest that monochloramine cometabolism should occur in practice and may be a significant contribution to monochloramine decay during nitrification episodes in drinking water distribution systems.


Chloramines/metabolism , Drinking Water/microbiology , Nitrosomonas europaea/metabolism , Ammonia/metabolism , Ammonium Chloride/pharmacology , Batch Cell Culture Techniques , Biodegradation, Environmental/drug effects , Biomass , Computer Simulation , Kinetics , Models, Biological , Nitrosomonas europaea/drug effects
...