Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39168386

RESUMEN

Microalgae have gained recognition as versatile candidates for the remediation of heavy metals (HMs). This study investigated the biosorption potential of Dunaliella sp. AL1 for copper (Cu(II)) and hexavalent chromium (Cr(VI)) in aqueous solutions. The marine microalga Dunaliella sp. AL1 was exposed to half-sublethal concentrations of both metals in single and bimetallic systems, and responses in algal growth, oxidative stress, photosynthetic pigment production, and photosynthetic performance were evaluated. Cu and/or Cr exposure increased the generation of reactive oxygen species (ROS) in microalgae cells but did not impact algal growth. In terms of photosynthesis, there was a decrease in chlorophylls and carotenoids production in the microalgae culture treated with Cr, either alone or in combination with Cu. The study recorded promising metal removal efficiencies: 26.67%-20.11% for Cu and 94.99%-95.51% for Cr, in single and bimetallic systems, respectively. FTIR analysis revealed an affinity of Cu and Cr ions towards aliphatic/aldehyde C-H, N-H bending, and phosphate groups, suggesting the formation of complex bonds. Biochemical analysis of microalgae biomass collected after the removal of Cr alone or in combination with Cu showed a significant decrease in total carbohydrate content and soluble protein levels. Meanwhile, higher lipid accumulation was recorded and evidenced by BODIPY 505/515 staining. Fatty acid composition analysis by GC revealed a modulation in lipid composition, with a decrease in the ratio of unsaturated fatty acids (UFA) to saturated fatty acids (SFA), in response to Cu, Cr, and Cu-Cr exposure, indicating the suitability of the biomass for sustainable biofuel production.


Asunto(s)
Cromo , Cobre , Microalgas , Contaminantes Químicos del Agua , Cromo/metabolismo , Cromo/toxicidad , Cobre/toxicidad , Cobre/metabolismo , Microalgas/metabolismo , Microalgas/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Chlorophyceae/metabolismo , Chlorophyceae/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Biodegradación Ambiental , Biomasa
2.
Environ Pollut ; 359: 124574, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029865

RESUMEN

Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.


Asunto(s)
Microalgas , Fotosíntesis , Poliestirenos , Contaminantes Químicos del Agua , Xantófilas , Xantófilas/metabolismo , Fotosíntesis/efectos de los fármacos , Poliestirenos/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Chlorophyceae/efectos de los fármacos , Chlorophyceae/metabolismo , Estrés Oxidativo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Especies Reactivas de Oxígeno/metabolismo , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Microplásticos/toxicidad , Nanopartículas/toxicidad , Antioxidantes/metabolismo
3.
Biofouling ; 40(8): 447-466, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39034852

RESUMEN

Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of Dunaliella salina were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against Pseudomonas aeruginosa. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of P. aeruginosa toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that P. aeruginosa adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.


Asunto(s)
Adhesión Bacteriana , Interacciones Hidrofóbicas e Hidrofílicas , Poliésteres , Tereftalatos Polietilenos , Impresión Tridimensional , Pseudomonas aeruginosa , Poliésteres/química , Tereftalatos Polietilenos/química , Adhesión Bacteriana/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Propiedades de Superficie , Chlorophyceae/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
Chemosphere ; 363: 142868, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025305

RESUMEN

In this study, laboratory-scale cultivation of T. chuii and D. tertiolecta was conducted using Conway, F/2, and TMRL media to evaluate their biochemical composition and economic costs. The highest cell density (30.36 × 106 cells/mL) and dry weight (0.65 g/L) for T. chuii were achieved with Conway medium. This medium also produced biomass with maximum lipid content (25.65%), proteins (27.84%), and total carbohydrates (8.45%) compared with F/2 and TMRL media. D. tertiolecta reached a maximum cell density of 17.50 × 106 cells/mL in F/2 medium, which was notably lower than that of T. chuii. Furthermore, the media cost varied from US$0.23 to US$0.74 for each 1 L of media, primarily due to the addition of Na3PO4, KNO3, and cyanocobalamin. Thus, biomass production rates varied between US$38.81 and US$128.80 per kg on a dry weight basis. These findings comprehensively compare laboratory conditions and the costs associated with biomass production in different media. Additionally, this study explored the potential of T. chuii and D. tertiolecta strains, as well as their consortia with bacteria, for the degradation of various emerging pollutants (EPs), including caffeine, salicylic acid, DEET, imidacloprid, MBT, cimetidine, venlafaxine, methylparaben, thiabendazole, and paracetamol. Both microalgal strains demonstrated effective degradation of EPs, with enhanced degradation observed in microalgae-bacterial consortia. These results suggest that the symbiotic relationship between microalgae and bacteria can be harnessed for the bioremediation of EPs, thereby offering valuable insights into the environmental applications of microalgal cultivation.


Asunto(s)
Biodegradación Ambiental , Biomasa , Medios de Cultivo , Medios de Cultivo/química , Chlorophyceae/efectos de los fármacos , Chlorophyceae/metabolismo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo
5.
Environ Toxicol Chem ; 43(8): 1855-1869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38864594

RESUMEN

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.


Asunto(s)
Cadmio , Microalgas , Níquel , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua , Níquel/toxicidad , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Microalgas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Clorofila A , Clorofila/metabolismo
6.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602639

RESUMEN

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Asunto(s)
Microalgas , Microalgas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Nanopartículas/toxicidad
7.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533661

RESUMEN

AIMS: This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS: The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS: Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.


Asunto(s)
Peróxido de Hidrógeno , Hidroponía , Microalgas , Solanum lycopersicum , Agua , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Peróxido de Hidrógeno/metabolismo , Agua/metabolismo , Malondialdehído/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Electrólisis , Superóxido Dismutasa/metabolismo , Glutatión Reductasa/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Oxidación-Reducción
8.
Environ Toxicol Pharmacol ; 87: 103727, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34454063

RESUMEN

The intensive use of the antihypertensive losartan potassium (LOS) has culminated in its high occurrence in aquatic environments. However, insufficient studies had investigated its effects in non-target organisms. In this study, ecotoxicity of LOS was assessed in aquatic organisms from distinct trophic levels (Desmodesmus subspicatus, Daphnia magna, and Astyanax altiparanae). Genotoxicity was assessed by the comet assay in D. magna and A. altiparanae, and biochemical biomarkers for the fish. LOS was more toxic to D. subspicatus (EC50(72h) = 27.93 mg L-1) than D. magna (EC50 = 303.69 mg L-1). Subsequently, this drug showed to induce more DNA damage in D. magna than A. altiparanae, when exposed to 2.5 mg L-1. No significant stress responses were observed by the fish biomarkers, suggesting that higher trophic levels organisms are more tolerant to LOS toxicity. LOS showed relatively low toxic potential for a short period of exposure, but with different patterns of toxicity for the organisms from distinct trophic levels, contributing to further risk assessment of LOS.


Asunto(s)
Antihipertensivos/toxicidad , Losartán/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Characidae/genética , Characidae/metabolismo , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Ensayo Cometa , Daphnia/efectos de los fármacos , Daphnia/genética , Cadena Alimentaria , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo
9.
Molecules ; 26(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198752

RESUMEN

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


Asunto(s)
Bencimidazoles/análisis , Compuestos de Bifenilo/análisis , Ácido Hipocloroso/química , Tetrazoles/análisis , Contaminantes Químicos del Agua/análisis , Aliivibrio fischeri/efectos de los fármacos , Animales , Bencimidazoles/toxicidad , Compuestos de Bifenilo/toxicidad , Chlorophyceae/efectos de los fármacos , Daphnia/efectos de los fármacos , Europa (Continente) , Lagos/química , América del Norte , Ríos/química , Tetrazoles/toxicidad , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
10.
Mar Drugs ; 19(6)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199219

RESUMEN

Natural astaxanthin helps reduce the negative effects caused by oxidative stress and other related factors, thereby minimizing oxidative damage. Therefore, it has considerable potential and broad application prospects in human health and animal nutrition. Haematococcus pluvialis is considered to be the most promising cell factory for the production of natural astaxanthin. Previous studies have confirmed that nonmotile cells of H. pluvialis are more tolerant to high intensity of light than motile cells. Cultivating nonmotile cells as the dominant cell type in the red stage can significantly increase the overall astaxanthin productivity. However, we know very little about how to induce nonmotile cell formation. In this work, we first investigated the effect of phosphorus deficiency on the formation of nonmotile cells of H. pluvialis, and then investigated the effect of NaCl on the formation of nonmotile cells under the conditions of phosphorus deficiency. The results showed that, after three days of treatment with 0.1% NaCl under phosphorus deficiency, more than 80% of motile cells had been transformed into nonmotile cells. The work provides the most efficient method for the cultivation of H. pluvialis nonmotile cells so far, and it significantly improves the production of H. pluvialis astaxanthin.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Estadios del Ciclo de Vida/fisiología , Fósforo/deficiencia , Cloruro de Sodio/farmacología , Productos Biológicos/metabolismo , Estrés Oxidativo/fisiología , Cloruro de Sodio/metabolismo , Xantófilas/metabolismo
11.
Aquat Toxicol ; 236: 105865, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34034204

RESUMEN

Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.


Asunto(s)
Chlorophyceae/fisiología , Nanopartículas del Metal/toxicidad , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Clorofila A , Daño del ADN , Ecosistema , Agua Dulce , Oro , Técnica del ADN Polimorfo Amplificado Aleatorio
12.
Lett Appl Microbiol ; 72(5): 619-625, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33566365

RESUMEN

Improving the growth and pigment accumulation of microalgae by electrochemical approaches was considered a novel and promising method. In this research, we investigated the effect of conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) dispersible in water on growth and pigment accumulation of Haematococcus lacustris and Euglena gracilis. The results revealed that effect of PEDOT:PSS was strongly cell-dependent and each cell type has its own peculiar response. For H. lacustris, the cell density in the 50 mg·l-1 treatment group increased by 50·27%, and the astaxanthin yield in the 10 mg·l-1 treatment group increased by 37·08%. However, under the high concentrations of PEDOT:PSS treatment, cell growth was significantly inhibited, and meanwhile, the smaller and more active zoospores were observed, which reflected the changes in cell life cycle and growth mode. Cell growth of E. gracilis in all the PEDOT:PSS treatment groups were notably inhibited. Chlorophyll a content in E. gracilis decreased while chlorophyll b content increased in response to the PEDOT:PSS treatment. The results laid a foundation for further development of electrochemical methods to promote microalgae growth and explore the interactions between conductive polymers and microalgae cells.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proliferación Celular/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Euglena gracilis/crecimiento & desarrollo , Polímeros/farmacología , Poliestirenos/farmacología , Tiofenos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Chlorophyceae/efectos de los fármacos , Clorofila/metabolismo , Clorofila A/metabolismo , Conductividad Eléctrica , Técnicas Electroquímicas , Euglena gracilis/efectos de los fármacos , Polímeros/química , Xantófilas/metabolismo
13.
Ecotoxicol Environ Saf ; 208: 111628, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396148

RESUMEN

Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (ΦM) and effective (Φ'M) quantum yields and efficiency of the oxygen-evolving complex (OEC). Both metals affected the algal population growth, with an IC50-96h of 0.67 and 1.53 µM of Cd and Co, respectively. Moreover, the metals led to an increase in the total lipid content and reduced efficiency of OEC and ΦM. Cell density was the most sensitive endpoint to detect Cd toxicity after 96 h of treatment. Regarding Co, the photosynthetic parameters were the most affected and the total lipid content was the most sensitive endpoint as it was altered by the exposure to this metal in all concentrations. Cd led to increased contents of the lipid class wax esters (0.89 µM) and phospholipids (PL - at 0.89 and 1.11 µM) and decreased values of triglycerides (at 0.22 µM) and acetone-mobile polar lipids (AMPL - at 0.44 and 1.11 µM). The percentage of free fatty acids (FFA) and PL of microalgae exposed to Co increased, whereas AMPL decreased in all concentrations tested. We were able to detect differences between the toxicity mechanisms of each metal, especially how Co interferes in the microalgae at a biochemical level. Furthermore, to the best of our knowledge, this is the first study reporting Co effects in lipid classes of a freshwater Chlorophyceae. The damage caused by Cd and Co may reach higher trophic levels, causing potential damage to the aquatic communities as microalgae are primary producers and the base of the food chain.


Asunto(s)
Cadmio/toxicidad , Chlorophyceae/fisiología , Cobalto/toxicidad , Contaminantes Químicos del Agua/toxicidad , Chlorophyceae/efectos de los fármacos , Clorofila A , Ecotoxicología , Agua Dulce/química , Metales/farmacología , Microalgas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II
14.
Molecules ; 26(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451084

RESUMEN

The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.


Asunto(s)
Hidróxidos/toxicidad , Hierro/toxicidad , Nanopartículas/toxicidad , Zinc/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/metabolismo , Animales , Araceae/efectos de los fármacos , Araceae/metabolismo , Chlorophyceae/efectos de los fármacos , Chlorophyceae/metabolismo , Daphnia/efectos de los fármacos , Daphnia/metabolismo , Hidróxidos/química , Hierro/química , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Agua/química , Zinc/química
15.
Sci Rep ; 11(1): 381, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431982

RESUMEN

Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.


Asunto(s)
Chlorophyceae , Medios de Cultivo/farmacología , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Biocombustibles , Biomasa , Técnicas de Cultivo de Célula , Chlorophyceae/citología , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Chlorophyceae/metabolismo , Medios de Cultivo/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Microalgas/citología , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Nitrógeno/deficiencia , Nitrógeno/farmacología , Inanición/metabolismo
16.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911184

RESUMEN

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Asunto(s)
Acetamidas/toxicidad , Chlorophyceae/efectos de los fármacos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Catalasa/metabolismo , Chlorophyceae/fisiología , Agua Dulce , Glutatión/metabolismo , Homeostasis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
17.
Aquat Toxicol ; 230: 105706, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33302172

RESUMEN

Triclosan, a widely used biocide broadly found in aquatic environments, is cause of concern due to its unknown effects on non-targets organisms. In this study, a multi biomarker approach was used in order to evaluate the 72 h-effect of triclosan on the freshwater alga Pseudokirchneriella subcapitata (Raphidocelis subcapitata). Triclosan, at environmental relevant concentrations (27 and 37 µg L-1), caused a decrease of proliferative capacity, which was accompanied by an increase of cell size and a profound alteration of algae shape. It was found that triclosan promoted the intracellular accumulation of reactive oxygen species, the depletion of non-enzymatic antioxidant defenses (reduced glutathione and carotenoids) and a decrease of cell metabolic activity. A reduction of photosynthetic pigments (chlorophyll a and b) was also observed. For the highest concentration tested (37 µg L-1), a decrease of photosynthetic efficiency was detected along with a diminution of the relative transport rate of electrons on the photosynthetic chain. In conclusion, triclosan presents a deep impact on the microalga P. subcapitata morphology and physiology translated by multiple target sites instead of a specific point (cellular membrane) observed in the target organism (bacteria). Additionally, this study contributes to clarify the toxicity mechanisms of triclosan, in green algae, showing the existence of distinct modes of action of the biocide depending on the microalga.


Asunto(s)
Chlorophyceae/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Desinfectantes/toxicidad , Triclosán/toxicidad , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Chlorophyceae/metabolismo , Clorofila A/metabolismo , Chlorophyta/metabolismo , Desinfectantes/metabolismo , Agua Dulce/química , Glutatión/metabolismo , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Triclosán/metabolismo , Contaminantes Químicos del Agua/metabolismo
18.
Environ Toxicol Pharmacol ; 82: 103550, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33227413

RESUMEN

Persistent organic and inorganic contaminants generated by industrial effluent wastes poses a threat to the maintenance of aquatic ecosystems and public health. The Khniss and Hamdoun rivers, located in the central-east of Tunisia, receive regularly domestic and textile wastewater load. The present study aimed to survey the water quality of these rivers using physicochemical, analytical and toxicological approaches. In the physicochemical analysis, the recorded levels of COD and TSS in both samples exceed the Tunisian standards. Using the analytical approach, several metals and some textile dyes were detected. Indeed, 17 metals were detected in both samples in varying concentrations, which do not exceed the Tunisian standards. The sources of metals pollution can be of natural and anthropogenic origin. Three textile disperse dyes were detected with high levels compared to other studies: the disperse orange 37 was detected in the Khniss river with a concentration of 6.438 µg/L and the disperse red 1 and the disperse yellow 3 were detected in the Hamdoun river with concentrations of 3.873 µg/L and 1895 µg/L, respectively. Textile activities were the major sources of disperse dyes. For both samples, acute and chronic ecotoxicity was observed in all the studied organisms, however, no genotoxic activity was detected. The presence of metals and textile disperse dyes could be associated with the ecotoxicological effects observed in the river waters, in particular due to the industrial activity, a fact that could deteriorate the ecosystem and therefore threaten the human health of the population living in the study areas. Combining chemical and biological approaches, allowed the detection of water ecotoxicity in testing organisms and the identification of possible contributors to the toxicity observed in these multi-stressed water reservoirs.


Asunto(s)
Contaminantes Químicos del Agua/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/metabolismo , Animales , Arsénico/análisis , Arsénico/toxicidad , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Colorantes/análisis , Colorantes/toxicidad , Daphnia , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente , Residuos Industriales , Lepidium sativum/efectos de los fármacos , Lepidium sativum/crecimiento & desarrollo , Metales/análisis , Metales/toxicidad , Parabenos/análisis , Parabenos/toxicidad , Plaguicidas/análisis , Plaguicidas/toxicidad , Fenoles/análisis , Fenoles/toxicidad , Ríos , Pruebas de Toxicidad , Túnez , Aguas Residuales , Contaminantes Químicos del Agua/análisis
19.
J Toxicol Environ Health A ; 84(6): 249-260, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33357043

RESUMEN

In the aquatic environment, plastics may release several hazardous substances of severe ecotoxicological concern not covalently bound to the polymers. The aim of this study was to examine the adverse effects of leachates of different virgin polymers, polypropylene (PP), polyethylene (PE), and polystyrene (PS) on marine microalgae Dunaliella tertiolecta. The tests carried out on D. tertiolecta included: growth inhibition, oxidative stress (DCFH-DA), and DNA damage (COMET assay). Polypropylene and PS leachates produced growth inhibition at the lowest concentration (3.1% of leachate). In contrast, a hormesis phenomenon was observed with PE leachates. An algae inhibition growth ranking (PP>PS>PE) was noted, based upon EC50 values. Reactive oxygen species (ROS) generated were increased with leachates concentrations with PS exhibiting the highest ROS levels, while a marked genotoxic effect (30%) was found only with PP. All leachates were free from detectable quantities of organic compounds (GC/MS) but showed the presence of transition, post-transition and alkaline earth metals, metalloids, and nonmetals (

Asunto(s)
Chlorophyceae/efectos de los fármacos , Microalgas/efectos de los fármacos , Polietileno/toxicidad , Polipropilenos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Daño del ADN , Estrés Oxidativo
20.
Artículo en Inglés | MEDLINE | ID: mdl-33255235

RESUMEN

The photodegradation process of seven glucocorticoids (GCs), cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO) and triamcinolone (TRIAM) was studied in tap and river water at a concentration close to the environmental ones. All drugs underwent sunlight degradation according to a pseudo-first-order decay. The kinetic constants ranged from 0.00082 min-1 for CORT to 0.024 min-1 for PRED and PREDLO. The photo-generated products were identified by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The main steps of the degradation pathways were the oxidative cleavage of the chain 17 for CORT, HCORT and the rearrangement of the cyclohexadiene moiety for the other GCs. The acute and chronic toxicity of GCs and of their photoproducts was assessed by the V. fischeri and P.subcapitata inhibition assays. The bioassays revealed no significant differences in toxicity between the parent compounds and their photoproducts, but the two organisms showed different responses. All samples produced a moderate acute toxic effect on V. fisheri and no one in the chronic tests. On the contrary, evident hormesis or eutrophic effect was produced on the algae, especially for long-term contact.


Asunto(s)
Agua Dulce , Glucocorticoides , Luz Solar , Aliivibrio fischeri/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Agua Dulce/química , Glucocorticoides/análisis , Glucocorticoides/química , Glucocorticoides/efectos de la radiación , Glucocorticoides/toxicidad , Fotólisis/efectos de la radiación , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA