Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Food Chem ; 460(Pt 3): 140756, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121782

RESUMEN

Vitamin D plays a crucial role in bone, immunology, and neurophysiological functions but has inadequate bioavailability in the human body. In this paper, six different liquid beverages were used for vitamin D3 fortification, investigating the effect of different food matrices on the bioaccessibility of vitamin D. Not from concentrate (NFC) apple juice (9.34%) and NFC orange juice (8.12%) presented about 20% higher bioaccessibility of vitamin D3 than soybean and skim milk, and achieved a similar value of whole milk (8.04%). Meanwhile, the bioaccessibility of NFC apple and orange juice was markedly about 120% higher than that of apple clear juice. From the correlation analysis, the bioaccessibility of VD3 indicated significant correlations with small intestine retention (0.82) and viscosity (0.66). But small intestinal particle size showed a negative effect on bioaccessibility (-0.78). Therefore, food components, delivery matrices, and physicochemical properties of digesta were key factors to achieve higher bioaccessibility for guiding formulation design.


Asunto(s)
Disponibilidad Biológica , Colecalciferol , Jugos de Frutas y Vegetales , Leche , Colecalciferol/análisis , Colecalciferol/metabolismo , Colecalciferol/química , Animales , Leche/química , Leche/metabolismo , Jugos de Frutas y Vegetales/análisis , Humanos , Malus/química , Malus/metabolismo , Alimentos Fortificados/análisis , Bebidas/análisis , Viscosidad , Tamaño de la Partícula , Digestión
2.
Int J Biol Macromol ; 278(Pt 3): 134894, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168215

RESUMEN

Vitamin D encapsulation can significantly improve its bioavailability, stability, and solubility. Various biopolymers viz. whey protein isolate, carboxymethyl cellulose, alginate and gum arabic were studied for their potential to be used as wall material and gum arabic was selected for encapsulating vitamin D3 as it possesses lesser particle size, apparent viscosity and better stability in terms of zeta potential. Box Behnken design was employed for optimizing the process conditions for developing vitamin D3 nanoemulsion. Box Behnken design was constructed using ultrasonic amplitude, sonication time and vitamin D3/wall material percent as independent factors. The optimum conditions obtained were ultrasonic amplitude (80 %), sonication time (12 min) and vitamin D3/wall material percent (5). The designed nanoemulsion showed a particle size of 20.04 nm, zeta potential of -28.2 mV, and encapsulation efficiency of 71.9 %. Chemical interactions were observed in the developed nanoemulsion as demonstrated by Differential scanning calorimeter thermograms and Fourier transform infrared spectra of the nanoemulsion. The Korsmeyer-Peppas model was the most suitable for describing the release of vitamin D3 from the nanoemulsion. Fabricated nanoemulsion has the potential to be used in food and pharmaceutical industries.


Asunto(s)
Colecalciferol , Emulsiones , Goma Arábiga , Tamaño de la Partícula , Goma Arábiga/química , Emulsiones/química , Colecalciferol/química , Nanopartículas/química , Sonicación/métodos , Viscosidad , Espectroscopía Infrarroja por Transformada de Fourier , Portadores de Fármacos/química , Ondas Ultrasónicas , Liberación de Fármacos
3.
Molecules ; 29(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202842

RESUMEN

Vitamin D3 is a crucial fat-soluble pro-hormone essential for bolstering bone health and fortifying immune responses within the human body. Orodispersible films (ODFs) serve as a noteworthy formulation strategically designed to enhance the rapid dissolution of vitamin D, thereby facilitating efficient absorption in patients. This innovative approach not only streamlines the assimilation process but also plays a pivotal role in optimizing patient compliance and therapeutic outcomes. The judicious utilization of such advancements underscores a paradigm shift in clinical strategies aimed at harnessing the full potential of vitamin D for improved patient well-being. This study aims to examine the vitamin D3 ODF structure using spectroscopic techniques to analyze interactions with excipients like mannitol. Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy were utilized to assess molecular composition, intermolecular bonding, and vitamin D3 stability. Understanding these interactions is essential for optimizing ODF formulation, ensuring stability, enhancing bioavailability, and facilitating efficient production. Furthermore, this study involves a translational approach to interpreting chemical properties to develop an administration protocol for ODFs, aiming to maximize absorption and minimize waste. In conclusion, understanding the characterized chemical properties is pivotal for translating them into effective self-administration modalities for Vitamin D films.


Asunto(s)
Colecalciferol , Colecalciferol/química , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Administración Oral , Espectrofotometría Ultravioleta , Excipientes/química , Solubilidad , Disponibilidad Biológica
4.
Food Chem ; 458: 140284, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38970952

RESUMEN

Lignin nanoparticles (LNP), extracted from spent materials of Dashamoola Arishta (Ayurvedic formulation), shared a molecular weight of 14.42 kDa with commercial lignin. Processed into LNPs (496.43 ± 0.54 nm) via planetary ball milling, they demonstrated stability at pH 8.0 with a zeta potential of -32 ± 0.27 mV. Operating as Pickering particles, LNP encapsulated curcumin and vitamin D3 in sunflower oil, forming LnE + Cu + vD3 nanoemulsions (particle size: 347.40 ± 0.71 nm, zeta potential: -42.27 ± 0.72 mV) with high encapsulation efficiencies (curcumin: 87.95 ± 0.21%, vitamin D3: 72.66 ± 0.11%). The LnE + Cu + vD3 emulsion exhibited stability without phase separation over 90 days at room (27 ± 2 °C) and refrigeration (4 ± 1 °C) temperatures. Remarkably, LnE + Cu + vD3 exhibited reduced toxicity, causing 29.32% and 34.99% cell death in L6 and RAW264.7 cells respectively, at the highest concentration (50 µg/mL). This underscores the potential valorization of Ayurvedic industry spent materials for diverse industrial applications.


Asunto(s)
Colecalciferol , Curcumina , Emulsiones , Lignina , Nanopartículas , Tamaño de la Partícula , Curcumina/química , Nanopartículas/química , Lignina/química , Emulsiones/química , Colecalciferol/química , Ratones , Animales , Composición de Medicamentos , Células RAW 264.7 , Extractos Vegetales/química , Residuos/análisis , Ratas , Residuos Industriales/análisis
5.
Food Chem ; 451: 139507, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696940

RESUMEN

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.


Asunto(s)
Disponibilidad Biológica , Colecalciferol , Digestión , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Humanos , Colecalciferol/química , Colecalciferol/metabolismo , Lactante , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo
6.
Molecules ; 29(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792228

RESUMEN

Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.


Asunto(s)
Alendronato , Huesos , Colecalciferol , Micelas , Nanoestructuras , Colecalciferol/química , Nanoestructuras/química , Huesos/efectos de los fármacos , Huesos/metabolismo , Alendronato/química , Polietilenglicoles/química , Humanos , Sistemas de Liberación de Medicamentos , Luminiscencia , Nanopartículas/química , Portadores de Fármacos/química , Puntos Cuánticos/química
7.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599429

RESUMEN

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Asunto(s)
Catequina , Catequina/análogos & derivados , Colecalciferol , Productos Finales de Glicación Avanzada , Unión Proteica , Albúmina Sérica Humana , Catequina/farmacología , Catequina/química , Catequina/metabolismo , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Colecalciferol/farmacología , Colecalciferol/metabolismo , Colecalciferol/química , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Simulación del Acoplamiento Molecular , Termodinámica , Simulación por Computador
8.
Int J Biol Macromol ; 268(Pt 1): 131451, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614177

RESUMEN

In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.


Asunto(s)
Agar , Ácido Cítrico , Emulsiones , Tamaño de la Partícula , Emulsiones/química , Agar/química , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Geles/química , Reología , Agua/química , Colecalciferol/química
9.
Bioprocess Biosyst Eng ; 47(5): 753-766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38573334

RESUMEN

Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.


Asunto(s)
Hibiscus , Óxido de Magnesio , Osteoporosis , Hibiscus/química , Humanos , Osteoporosis/tratamiento farmacológico , Óxido de Magnesio/química , Compuestos Férricos/química , Extractos Vegetales/química , Femenino , Masculino , Calcio/química , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/química , Persona de Mediana Edad , Óxidos/química , Fosfatasa Alcalina/metabolismo , Colecalciferol/química , Colecalciferol/farmacología
10.
J Chem Inf Model ; 64(9): 3865-3873, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38598310

RESUMEN

Previous experimental studies have shown that the isomerization reaction of previtamin D3 (PreD3) to vitamin D3 (VitD3) is accelerated 40-fold when it takes place within a ß-cyclodextrin dimer, in comparison to the reaction occurring in conventional isotropic solutions. In this study, we employ quantum mechanics-based molecular dynamics (MD) simulations and statistical multistructural variational transition state theory to unveil the origin of this acceleration. We find that the conformational landscape in the PreD3 isomerization is highly dependent on whether the system is encapsulated. In isotropic media, the triene moiety of the PreD3 exhibits a rich torsional flexibility. However, when encapsulated, such a flexibility is limited to a more confined conformational space. In both scenarios, our calculated rate constants are in close agreement with experimental results and allow us to identify the PreD3 flexibility restriction as the primary catalytic factor. These findings enhance our understanding of VitD3 isomerization and underscore the significance of MD and environmental factors in biochemical modeling.


Asunto(s)
Simulación de Dinámica Molecular , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Catálisis , Isomerismo , Vitamina D/química , Vitamina D/metabolismo , Teoría Cuántica , Conformación Molecular , Colecalciferol/química , Colecalciferol/metabolismo
11.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474665

RESUMEN

Vitamin D3 deficiency is a global phenomenon, which can be managed with supplementation and food fortification. However, vitamin D3 bioaccessibility may depend on factors such as matrix composition and interactions throughout the gastrointestinal (GI) tract. This research focused on the effect of different matrices on vitamin D3 content during digestion, as well as the effect of pH on its bioaccessibility. The INFOGEST protocol was employed to simulate digestion. Three different types of commercial supplements, two foods naturally rich in vitamin D3, and three fortified foods were investigated. High-Performance Liquid Chromatography was used to determine the initial vitamin D3 content in the supplements and foods, as well as after each digestion stage. The results indicate that the foods exhibited higher bioaccessibility indices compared to the supplements and a higher percentage retention at the end of the gastric phase. The pH study revealed a positive correlation between an increased gastric pH and the corresponding content of vitamin D3. Interestingly, exposing the matrix to a low pH during the gastric phase resulted in an increased intestinal content of D3. Vitamin D3 is more bioaccessible from foods than supplements, and its bioaccessibility is susceptible to changes in gastric pH. Fasting conditions (i.e., gastric pH = 1) enhance the vitamin's bioaccessibility.


Asunto(s)
Colecalciferol , Suplementos Dietéticos , Colecalciferol/química , Suplementos Dietéticos/análisis , Alimentos Fortificados/análisis , Tracto Gastrointestinal/metabolismo , Concentración de Iones de Hidrógeno , Digestión , Disponibilidad Biológica
12.
Anal Chem ; 95(27): 10322-10329, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37339384

RESUMEN

The level of 25-hydroxyvitamin D3 [25(OH)VD3] in human blood is considered as the best indicator of vitamin D status, and its deficiency or excess can lead to various health problems. Current methods for monitoring 25(OH)VD3 metabolism in living cells have limitations in terms of sensitivity and specificity and are often expensive and time-consuming. To address these issues, an innovative trident scaffold-assisted aptasensor (TSA) system has been developed for the online quantitative monitoring of 25(OH)VD3 in complex biological environments. Through the computer-aided design, the TSA system includes an aptamer molecule recognition layer that is uniformly oriented, maximizing binding site availability, and enhancing sensitivity. The TSA system achieved the direct, highly sensitive, and selective detection of 25(OH)VD3 over a wide concentration range (17.4-12,800 nM), with a limit of detection of 17.4 nM. Moreover, we evaluated the efficacy of the system in monitoring the biotransformation of 25(OH)VD3 in human liver cancer cells (HepG2) and normal liver cells (L-02), demonstrating its potential as a platform for drug-drug interaction studies and candidate drug screening.


Asunto(s)
Calcifediol , Colecalciferol , Humanos , Vitamina D/química , Colecalciferol/química
13.
Food Res Int ; 169: 112809, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254385

RESUMEN

Curcumin and vitamin D3 are bioactive molecules of great importance for the food industry. However, their low stability in several processing conditions hampers their proper incorporation into powdered food formulations. This study proposes the enrichment of a common raw material (cornstarch) with curcumin and vitamin D3 by using high-shear wet agglomeration. The bioactives were initially encapsulated into liposome dispersions and then subjected to lyophilization. The resulting dried vesicles were later incorporated into cornstarch by wet agglomeration using maltodextrin as the binder solution. The phospholipid content and the amount of added liposomes were evaluated to characterize the enriched cornstarch samples. The lyophilized vesicles showed a high retention rate of 99 % for curcumin and vitamin D3, while the enriched cornstarch samples retained above 96 % (curcumin) and 98 % (vitamin D3) after 30 days of controlled storage. All in all, the presence of dried liposomes improved the flowability and delayed retrogradation phenomenon in agglomerated cornstarch. Therefore, this study introduced a novel and reliable method of incorporating hydrophobic and thermosensitive molecules into powdered food formulations by using readily available materials and a straightforward high-shear wet agglomeration process.


Asunto(s)
Curcumina , Liposomas , Liposomas/química , Almidón , Colecalciferol/química , Curcumina/química , Fosfolípidos/química
14.
Int J Biol Macromol ; 209(Pt A): 1111-1123, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421413

RESUMEN

To better understand the molecular and structural basis underlying the interaction of vitamin D3 hydroxyderivatives with AhR, molecular simulation was used to probe the binding of 1,20(OH)2D3, 1,25(OH)2D3, 20,23(OH)2D3 and 20(OH)D3 to AhR. qPCR showed that vitamin D3 derivatives stimulate expression of cyp1A1 and cyp1B1 genes that are downstream targets of AhR signaling. These secosteroids stimulated the translocation of the AhR to the nucleus, as measured by flow cytometry and western blotting. Molecular dynamics simulations were used to model the binding of vitamin D3 derivatives to AhR to examine their influence on the structure, conformation and dynamics of the AhR ligand binding domain (LBD). Binding thermodynamics, conformation, secondary structure, dynamical motion and electrostatic potential of AhR were analyzed. The molecular docking scores and binding free energy were all favorable for the binding of D3 derivatives to the AhR. These established ligands and the D3 derivatives are predicted to have different patterns of hydrogen bond formation with the AhR, and varied residue conformational fluctuations and dynamical motion for the LBD. These changes could alter the shape, size and electrostatic potential distribution of the ligand binding pocket, contributing to the different binding affinities of AhR for the natural ligands and D3 derivatives.


Asunto(s)
Colecalciferol , Receptores de Hidrocarburo de Aril , Colecalciferol/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
15.
ACS Appl Mater Interfaces ; 14(16): 18064-18078, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35436103

RESUMEN

Overexpression of the vitamin D3-inactivating enzyme CYP24A1 (cytochrome P450 family 24 subfamily and hereafter referred to as CYP24) can cause chronic kidney diseases, osteoporosis, and several types of cancers. Therefore, CYP24 inhibition has been considered a potential therapeutic approach. Vitamin D3 mimetics and small molecule inhibitors have been shown to be effective, but nonspecific binding, drug resistance, and potential toxicity limit their effectiveness. We have identified a novel 70-nt DNA aptamer-based inhibitor of CYP24 by utilizing the competition-based aptamer selection strategy, taking CYP24 as the positive target protein and CYP27B1 (the enzyme catalyzing active vitamin D3 production) as the countertarget protein. One of the identified aptamers, Apt-7, showed a 5.8-fold higher binding affinity with CYP24 than the similar competitor CYP27B1. Interestingly, Apt-7 selectively inhibited CYP24 (the relative CYP24 activity decreased by 39.1 ± 3% and showed almost no inhibition of CYP27B1). Furthermore, Apt-7 showed cellular internalization in CYP24-overexpressing A549 lung adenocarcinoma cells via endocytosis and induced endogenous CYP24 inhibition-based antiproliferative activity in cancer cells. We also employed high-speed atomic force microscopy experiments and molecular docking simulations to provide a single-molecule explanation of the aptamer-based CYP24 inhibition mechanism. The novel aptamer identified in this study presents an opportunity to generate a new probe for the recognition and inhibition of CYP24 for biomedical research and could assist in the diagnosis and treatment of cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/química , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Aptámeros de Nucleótidos/farmacología , Colecalciferol/química , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Simulación del Acoplamiento Molecular , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo
16.
Carbohydr Polym ; 284: 119162, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35287895

RESUMEN

Pickering emulsions are of interest in medicament transport systems. The properties of emulsions are influenced by the type of oil and the surface structure of nanoparticles-stabilizers. The process of formation of o/w emulsions of olive oil stabilized by chitin nanocrystals was investigated, their stability under the influence of physical factors, rheological characteristics, acute toxicity after oral administration, stability under the conditions of a model of the gastrointestinal tract, and their potential for oral transport of vitamin D3 were analyzed. Physically stable emulsions were obtained at a stabilizer concentration of 3.6 g/l. The addition of electrolyte leads to a substantial reduction in the average size of microdroplets. The resulting emulsions have rheopexy properties and the rheopexy index increases at 37 °C. Emulsions are classified as non-toxic when taken orally, physically stable in the upper digestive system, and capable of efficiently transporting vitamin D3 with a full release in the small intestine.


Asunto(s)
Quitina , Nanopartículas , Quitina/química , Colecalciferol/química , Emulsiones/química , Nanopartículas/química , Nanopartículas/toxicidad , Aceite de Oliva , Tamaño de la Partícula , Agua/química
17.
Biomolecules ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35053217

RESUMEN

The active form of vitamin D3 (D3), 1a,25-dihydroxyvitamn D3 (1,25D3), plays a central role in calcium and bone metabolism. Many structure-activity relationship (SAR) studies of D3 have been conducted, with the aim of separating the biological activities of 1,25D3 or reducing its side effects, such as hypercalcemia, and SAR studies have shown that the hypercalcemic activity of C2-substituted derivatives and 19-nor type derivatives is significantly suppressed. In the present paper, we describe the synthesis of 19-nor type 1,25D3 derivatives with alkoxy groups at C2, by means of the Julia-Kocienski type coupling reaction between a C2 symmetrical A ring ketone and a CD ring synthon. The effect of C2 substituents on the stereoselectivity of the coupling reaction was evaluated. The biological activities of the synthesized derivatives were evaluated in an HL-60 cell-based assay. The a-methoxy-substituted C2α-7a was found to show potent cell-differentiating activity, with an ED50 value of 0.38 nM, being 26-fold more potent than 1,25D3.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colecalciferol , Colecalciferol/análogos & derivados , Colecalciferol/síntesis química , Colecalciferol/química , Colecalciferol/farmacología , Células HL-60 , Humanos , Relación Estructura-Actividad
18.
Eur J Med Chem ; 228: 114005, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34844141

RESUMEN

Vitamin D3 (VD3) is a seco-steroid that inhibits the Hedgehog (Hh) signaling pathway. Initial studies suggested its anti-Hh activity results from direct inhibition of Smoothened, a seven-transmembrane cell surface receptor that is a key regulator of the Hh signaling cascade. More recently, a role for the Vitamin D Receptor in mediating inhibition of Hh-signaling by seco-steroid has been suggested. Herein, an affinity-based protein profiling study was carried out to better understand the cellular proteins that govern VD3-mediated anti-Hh activity. We synthesized a novel biotinylated VD3 analogue (8) for use as a chemical probe to explore cellular binding targets of the seco-steroidal scaffold. Through a series of pull-down experiments and follow up mass spectrum analyses, heat shock protein 70 (Hsp70) was identified as a primary binding protein of VD3. Hsp70 was validated as a binding target of VD3 through a series of biochemical and cellular assays. VD3 bound with micromolar affinity to Hsp70. In addition, both selective knockdown of Hsp70 expression and pharmacological inhibition of its activity with known Hsp70 inhibitors suppressed Hh-signaling transduction in murine basal cell carcinoma cells, suggesting that Hsp70 regulates proper Hh-signaling. Additional cellular assays suggest that VD3 and its seco-steroidal metabolites inhibit Hh-signaling through different mechanisms.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Basocelular/tratamiento farmacológico , Colecalciferol/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas Hedgehog/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colecalciferol/síntesis química , Colecalciferol/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
19.
Biomolecules ; 11(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34827637

RESUMEN

The vitamin D3 structure consists of the A-ring, a linker originating from the B-ring, C-ring, D-ring, and side-chain moieties. Each unit has its unique role in expressing the biological activities of vitamin D3. Many efforts have been made to date to assess the possible clinical use of vitamin D. Some organic chemists focused on the D-ring structure of vitamin D and synthesized D-ring-modified vitamin D analogues, and their biological activities were studied. This review summarizes the synthetic methodologies of D-ring-modified vitamin D analogues, except for seco-D, and their preliminary biological profiles.


Asunto(s)
Vitamina D/análogos & derivados , Vitamina D/síntesis química , Animales , Colecalciferol/química , Humanos , Naftalenos/química , Vitamina D/química , Vitamina D/farmacología
20.
Cell Biochem Funct ; 39(8): 991-997, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34472641

RESUMEN

Breast cancer is associated with a high rate of recurrence, resistance therapy and mortality worldwide. We aimed at investigating the inhibitory effects of Sulindac and vitamin D3 (VD) on MCF-7 human breast cancer cells. MCF-7 cells were cultured with different concentrations of Sulindac and VD over a period of 24, 48 and 72 hours for cell viability and IC50 experiments. Hochst staining was used to evaluate apoptosis, whereas quantitative PCR (qPCR) was performed to measure mRNA levels of BCL-2 and BAX genes. Immunofluorescence staining was used to monitor intracellular ß-catenin expression. The protein levels of AKT, AMPK and P65 were measured by western blotting. The result showed that cell viability decreased in treated cells dose/time dependently (P < .05). Hochst staining showed an increase in fragmented nuclei in treated cells. The expression of BCL-2 and BAX genes decreased and increased in treated cells, respectively (P < .05). Immunofluorescence staining indicated that the expression of ß-catenin significantly reduced in treated cells. The AKT-1/p-Akt-1 and AMPK/p-AMPK ratio increased in treated cells (P < .05), but the P65/p-P65 ratio did not change significantly (P > .05). Our results indicated that the combination of Sulindac and VD has a growth-inhibiting effect on MCF-7 cells through AMPK/Akt/ß-catenin axis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Antineoplásicos/farmacología , Colecalciferol/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sulindac/farmacología , beta Catenina/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colecalciferol/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sulindac/química , Células Tumorales Cultivadas , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA