Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.925
1.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38709169

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Chromatin Assembly and Disassembly , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Repressor Proteins , Animals , Humans , Mice , Adenosine Triphosphatases , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Centromere/metabolism , Centromere/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Histones/genetics , Methylation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Open Biol ; 14(5): 230358, 2024 May.
Article En | MEDLINE | ID: mdl-38689555

The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.


Cell Nucleolus , Chromatin , Embryonic Development , Animals , Cell Nucleolus/metabolism , Chromatin/metabolism , Mice , Zygote/metabolism , Zygote/cytology , Gene Expression Regulation, Developmental , Chromatin Assembly and Disassembly , Humans
3.
Nat Commun ; 15(1): 4095, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750021

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Actin-Related Protein 2-3 Complex , Actins , Cell Nucleus , Chromatin , Mesenchymal Stem Cells , Actins/metabolism , Chromatin/metabolism , Cell Nucleus/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation , Cytochalasin D/pharmacology , Histones/metabolism , Humans , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Mice , Chromatin Assembly and Disassembly
4.
Biol Res ; 57(1): 22, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704609

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Chromatin Assembly and Disassembly , DNA-Binding Proteins , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin Assembly and Disassembly/physiology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histones/metabolism
5.
Nat Commun ; 15(1): 4139, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755155

The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.


Chromatin Assembly and Disassembly , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Multiple Myeloma , Tumor Microenvironment , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Tumor Microenvironment/genetics , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transcription, Genetic , Bone Marrow Cells/metabolism , Cell Movement/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Female , Male
6.
Nat Struct Mol Biol ; 31(5): 742-746, 2024 May.
Article En | MEDLINE | ID: mdl-38769465

Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A-H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.


Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Histones/metabolism , Histones/chemistry , Models, Molecular , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , DNA/metabolism , DNA/chemistry
7.
Genome Biol ; 25(1): 122, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741214

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Pluripotent Stem Cells , Single-Cell Analysis , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Genome, Human , Euchromatin/genetics , Euchromatin/metabolism , Chromatin/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Heterochromatin/metabolism , Embryonic Stem Cells/metabolism , Chromatin Assembly and Disassembly
8.
Cell Rep Med ; 5(4): 101504, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593809

Targeted therapies have improved outcomes for certain cancer subtypes, but cytotoxic chemotherapy remains a mainstay for triple-negative breast cancer (TNBC). The epithelial-to-mesenchymal transition (EMT) is a developmental program co-opted by cancer cells that promotes metastasis and chemoresistance. There are no therapeutic strategies specifically targeting mesenchymal-like cancer cells. We report that the US Food and Drug Administration (FDA)-approved chemotherapeutic eribulin induces ZEB1-SWI/SNF-directed chromatin remodeling to reverse EMT that curtails the metastatic propensity of TNBC preclinical models. Eribulin induces mesenchymal-to-epithelial transition (MET) in primary TNBC in patients, but conventional chemotherapy does not. In the treatment-naive setting, but not after acquired resistance to other agents, eribulin sensitizes TNBC cells to subsequent treatment with other chemotherapeutics. These findings provide an epigenetic mechanism of action of eribulin, supporting its use early in the disease process for MET induction to prevent metastatic progression and chemoresistance. These findings warrant prospective clinical evaluation of the chemosensitizing effects of eribulin in the treatment-naive setting.


Antineoplastic Agents , Furans , Ketones , Polyether Polyketides , Triple Negative Breast Neoplasms , United States , Humans , Triple Negative Breast Neoplasms/pathology , Chromatin Assembly and Disassembly , Prospective Studies , Antineoplastic Agents/therapeutic use
9.
Mol Cell ; 84(10): 1855-1869.e5, 2024 May 16.
Article En | MEDLINE | ID: mdl-38593804

RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.


Cell Lineage , DNA Helicases , Enhancer Elements, Genetic , Nuclear Proteins , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Cell Lineage/genetics , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Humans , Mice , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics
10.
Nat Immunol ; 25(5): 860-872, 2024 May.
Article En | MEDLINE | ID: mdl-38632339

Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.


Core Binding Factor Alpha 2 Subunit , Proto-Oncogene Proteins , Repressor Proteins , Trans-Activators , Transcription Factors , Tumor Suppressor Proteins , Proto-Oncogene Proteins/metabolism , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Mice , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Mice, Inbred C57BL , Chromosomal Proteins, Non-Histone/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Knockout , Chromatin Assembly and Disassembly , Cell Differentiation/immunology
11.
Proc Natl Acad Sci U S A ; 121(18): e2311374121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648478

The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.


Chromatin , Transcription Factors , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Gene Expression Regulation , Cell Nucleus/metabolism , Binding Sites , Chromatin Assembly and Disassembly
12.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664790

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , Single-Cell Analysis , Transcriptome , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Animals , Gene Expression Profiling , Chromatin/metabolism , Chromatin/genetics , Mice, Inbred C57BL , Gene Regulatory Networks , Chromatin Assembly and Disassembly , Disease Models, Animal , Male , RNA-Seq , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology
13.
Mol Biomed ; 5(1): 12, 2024 04 08.
Article En | MEDLINE | ID: mdl-38584203

The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.


Chromatin Assembly and Disassembly , Chromatin , Humans , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation , Histones/metabolism , Epigenesis, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Animals
16.
Biochem Soc Trans ; 52(2): 603-616, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38572912

ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.


Adenosine Triphosphate , Cell Lineage , Chromatin Assembly and Disassembly , Transcription Factors , Humans , Transcription Factors/metabolism , Animals , Adenosine Triphosphate/metabolism , Chromosomal Proteins, Non-Histone/metabolism
18.
Nature ; 627(8004): 671-679, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448585

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Chromatin Assembly and Disassembly , Chromatin , Nuclear Proteins , Nucleosomes , Proteomics , Humans , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Nuclear Proteins/analysis , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , Protein Binding , Proteomics/methods
19.
PLoS One ; 19(3): e0300255, 2024.
Article En | MEDLINE | ID: mdl-38512854

Chromodomain helicase DNA binding domain (CHD) proteins, including CHD7 and CHD8, remodel chromatin to enable transcriptional programs. Both proteins are important for proper neural development as heterozygous mutations in Chd7 and Chd8 are causative for CHARGE syndrome and correlated with autism spectrum disorders, respectively. Their roles in mature neurons are poorly understood despite influencing the expression of genes required for cell adhesion, neurotransmission, and synaptic plasticity. The Drosophila homolog of CHD7 and CHD8, Kismet (Kis), promotes neurotransmission, endocytosis, and larval locomotion. Endocytosis is essential in neurons for replenishing synaptic vesicles, maintaining protein localization, and preserving the size and composition of the presynaptic membrane. Several forms of endocytosis have been identified including clathrin-mediated endocytosis, which is coupled with neural activity and is the most prevalent form of synaptic endocytosis, and activity-dependent bulk endocytosis, which occurs during periods of intense stimulation. Kis modulates the expression of gene products involved in endocytosis including promoting shaggy/GSK3ß expression while restricting PI3K92E. kis mutants electrophysiologically phenocopy a liquid facets mutant in response to paradigms that induce clathrin-mediated endocytosis and activity-dependent bulk endocytosis. Further, kis mutants do not show further reductions in endocytosis when activity-dependent bulk endocytosis or clathrin-mediated endocytosis are pharmacologically inhibited. We find that Kis is important in postsynaptic muscle for proper endocytosis but the ATPase domain of Kis is dispensable for endocytosis. Collectively, our data indicate that Kis promotes both clathrin-mediated endocytosis and activity-dependent bulk endocytosis possibly by promoting transcription of several endocytic genes and maintaining the size of the synaptic vesicle pool.


Chromatin , Clathrin , Animals , Clathrin/metabolism , Chromatin Assembly and Disassembly , Synaptic Transmission/physiology , Drosophila/metabolism , Endocytosis/genetics , DNA Helicases/genetics , DNA Helicases/metabolism
20.
Nature ; 627(8005): 865-872, 2024 Mar.
Article En | MEDLINE | ID: mdl-38509377

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Epigenetic Memory , Multiple Sclerosis , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Astrocytes/enzymology , Astrocytes/metabolism , Astrocytes/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , CRISPR-Cas Systems , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Single-Cell Gene Expression Analysis , Transposases/metabolism
...