Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 521
1.
Gene ; 923: 148577, 2024 Sep 25.
Article En | MEDLINE | ID: mdl-38762016

Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161. We discovered that there are four T-DNA insertions present in the lnc161 genome, which disrupted the genes LNC161 (AT3G05035), AT3G57400, AT5G05630, and AT5G16450, respectively. However, none of these insertions were the causative mutation that leads to the lnc161 phenotypes. Strikingly, through genetic analyses and high throughput sequencing, we found an inversion of about 19.8 Mb sequences between LNC161 and AT3G57400. Moreover, the sequences between AT5G05630 and AT5G16450 (about 3.7 Mb) were translocated from chromosome 5 to chromosome 3, adjacent to the inversion sequences, and were duplicated. This duplication led to an up-regulation of genes expression in this region, potentially resulting in pleiotropic morphological traits in lnc161. Overall, this study provides a case showing complex chromosomal re-arrangement induced by T-DNA insertion.


Arabidopsis , Chromosome Inversion , DNA, Bacterial , Gene Duplication , Mutagenesis, Insertional , Chromosome Inversion/genetics , Arabidopsis/genetics , DNA, Bacterial/genetics , Chromosomes, Plant/genetics , Genome, Plant , Phenotype , Gene Expression Regulation, Plant
2.
Am J Hum Genet ; 111(6): 1140-1164, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38776926

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Chromosome Inversion , Rare Diseases , Humans , Rare Diseases/genetics , Male , Female , Chromosome Inversion/genetics , Pedigree , Genome, Human , Whole Genome Sequencing , Methyl-CpG-Binding Protein 2/genetics , Mutation , Homeodomain Proteins/genetics , Middle Aged
3.
J Mol Evol ; 92(3): 266-277, 2024 Jun.
Article En | MEDLINE | ID: mdl-38683367

Ascorbic acid functions as an antioxidant and facilitates other biochemical processes such as collagen triple helix formation, and iron uptake by cells. Animals which endogenously produce ascorbic acid have a functional gulonolactone oxidase gene (GULO); however, humans have a GULO pseudogene (GULOP) and depend on dietary ascorbic acid. In this study, the conservation of GULOP sequences in the primate haplorhini suborder were investigated and compared to the GULO sequences belonging to the primates strepsirrhini suborder. Phylogenetic analysis suggested that the conserved GULOP exons in the haplorhini primates experienced a high rate of mutations following the haplorhini/strepsirrhini divergence. This high mutation rate has decreased during the evolution of the haplorhini primates. Additionally, indels of the haplorhini GULOP sequences were conserved across the suborder. A separate analysis for GULO sequences and well-conserved GULOP sequences focusing on placental mammals identified an in-frame GULO sequence in the Brazilian guinea pig, and a potential GULOP sequence in the pika. Similar to haplorhini primates, the guinea pig and lagomorph species have experienced a high substitution rate when compared to the mammals used in this study. A shared synteny to examine the conservation of local genes near GULO/GULOP identified a conserved inversion around the GULO/GULOP locus between the haplorhini and strepsirrhini primates. Fischer's exact test did not support an association between GULOP and the chromosomal inversion. Mauve alignment showed that the inversion of the length of the syntenic block that the GULO/GULOP genes belonged to was variable. However, there were frequent rearrangements around ~ 2 million base pairs adjacent to GULOP involving the KIF13B and MSRA genes. These data may suggest that genes acquiring deleterious mutations in the coding sequence may respond to these deleterious mutations with rapid substitution rates.


Chromosome Inversion , Evolution, Molecular , Exons , L-Gulonolactone Oxidase , Mutation , Phylogeny , Primates , Animals , Exons/genetics , Primates/genetics , Mutation/genetics , Humans , L-Gulonolactone Oxidase/genetics , Chromosome Inversion/genetics , Pseudogenes/genetics , Conserved Sequence/genetics
4.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Article En | MEDLINE | ID: mdl-37929330

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Autism Spectrum Disorder , Muscular Dystrophies , Muscular Dystrophy, Duchenne , Child, Preschool , Female , Humans , Male , Autism Spectrum Disorder/genetics , Base Sequence , Chromosome Inversion/genetics , Dystrophin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophy, Duchenne/genetics , POU Domain Factors/genetics
5.
Plant Biotechnol J ; 22(3): 544-554, 2024 Mar.
Article En | MEDLINE | ID: mdl-37961986

Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.


Gene Editing , Plant Breeding , Plant Breeding/methods , Gene Editing/methods , Plants/genetics , Chromosome Inversion/genetics , Genome, Plant/genetics
6.
J Hum Genet ; 69(1): 47-52, 2024 Jan.
Article En | MEDLINE | ID: mdl-37950019

Zic family member 1 (ZIC1), a gene located on chromosome 3q24, encodes a transcription factor with zinc finger domains that is essential for the normal development of the cerebellum. Heterozygous loss-of-function of ZIC1 causes Dandy-Walker malformation, while heterozygous gain-of-function leads to a multiple congenital anomaly syndrome characterized by craniosynostosis, brain abnormalities, facial features, and learning disability. In this study, we present the results of genetic analysis of a male patient with clinically suspected Gomez-Lopez-Hernandez syndrome. The patient displayed multiple congenital abnormalities, including bicoronal craniosynostosis, characteristic facial features, cerebellar malformation with rhombencephalosynapsis, and temporal alopecia, and a de novo inversion of chromosome 3q. Breakpoint analysis using a Nanopore long-read sequencer revealed a breakpoint in the distal centromere of 3q24 located 7 kb downstream of the 3' untranslated region of ZIC1. On the basis of the clinical similarities, we concluded that the abnormalities in this patient were caused by the transcriptional dysregulation of ZIC1. We hypothesize the underlying molecular mechanisms of transcriptional dysregulation of ZIC1 such as the abnormalities in topologically associated domains encompassing ZIC1. This study highlights the usefulness of long-read sequencing in the analysis of de novo balanced chromosomal abnormalities.


Craniosynostoses , Dandy-Walker Syndrome , Nanopores , Humans , Male , Cerebellum/abnormalities , Chromosome Inversion/genetics , Craniosynostoses/genetics , Dandy-Walker Syndrome/genetics , Transcription Factors/genetics
7.
Nat Commun ; 14(1): 7020, 2023 11 02.
Article En | MEDLINE | ID: mdl-37919272

Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease activity. Foldback priming at DNA double-strand breaks (DSBs) is one mechanism proposed for the generation of inverted duplications. However, the other pathway steps have not been fully elucidated. Here, we show that a DSB induced near natural inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity, but not Rad1 nuclease, trims the heterologous flaps formed after foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric inversion chromosome. Finally, we show that stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences or by deletion of one centromere.


Chromosome Disorders , Saccharomyces cerevisiae Proteins , Humans , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromosome Inversion/genetics , Chromosome Disorders/genetics , Chromosomes/metabolism
8.
Parasit Vectors ; 16(1): 388, 2023 Oct 27.
Article En | MEDLINE | ID: mdl-37891582

BACKGROUND: Chromosomal inversion polymorphisms have been associated with adaptive behavioral, physiological, morphological and life history traits in the two main Afrotropical malaria vectors, Anopheles coluzzii and Anopheles gambiae. The understanding of the adaptive value of chromosomal inversion systems is constrained by the feasibility of cytological karyotyping. In recent years in silico and molecular approaches have been developed for the genotyping of most widespread inversions (2La, 2Rb and 2Rc). The 2Ru inversion, spanning roughly 8% of chromosome 2R, is commonly polymorphic in West African populations of An. coluzzii and An. gambiae and shows clear increases in frequency with increasing rainfall seasonally and geographically. The aim of this work was to overcome the constraints of currently available cytological and high-throughput molecular assays by developing a simple PCR assay for genotyping the 2Ru inversion in individual specimens of both mosquito species. METHODS: We designed tetra-primer amplification refractory mutation system (ARMS)-PCR assays based on five tag single-nucleotide polymorphisms (SNPs) previously shown to be strongly correlated with 2Ru inversion orientation. The most promising assay was validated against laboratory and field samples of An. coluzzii and An. gambiae karyotyped either cytogenetically or molecularly using a genotyping-in-thousands by sequencing (GT-seq) high-throughput approach that employs targeted sequencing of multiplexed PCR amplicons. RESULTS: A successful assay was designed based on the tag SNP at position 2R, 31710303, which is highly predictive of the 2Ru genotype. The assay, which requires only one PCR, and no additional post-PCR processing other than electrophoresis, produced a clear banding pattern for 98.5% of the 454 specimens tested, which is a 96.7% agreement with established karyotyping methods. Sequences were obtained for nine of the An. coluzzii specimens manifesting 2Ru genotype discrepancies with GT-seq. Possible sources of these discordances are discussed. CONCLUSIONS: The tetra-primer ARMS-PCR assay represents an accurate, streamlined and cost-effective method for the molecular karyotyping of the 2Ru inversion in An. coluzzii and An. gambiae. Together with approaches already available for the other common polymorphic inversions, 2La, 2Rb and 2Rc, this assay will allow investigations of the adaptive value of the complex set of inversion systems observed in the two major malaria vectors in the Afrotropical region.


Anopheles , Malaria , Animals , Anopheles/genetics , Chromosome Inversion/genetics , Mosquito Vectors/genetics , Karyotyping , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide
9.
Medicina (Kaunas) ; 59(10)2023 Oct 13.
Article En | MEDLINE | ID: mdl-37893540

Background and Objectives: Despite the vast heterogeneity in the genetic defects causing hemophilia A (HA), large intron inversions represent a major cause of disease, accounting for almost half of the cases of severe HA worldwide. We investigated the intron 22 and intron 1 inversion status in a cohort of Romanian unrelated patients with severe HA. Moreover, we evaluated the role of these inversions as relative risk factors in inhibitor occurrence. Materials and Methods: Inverse shifting-a polymerase chain reaction method was used to detect the presence of intron 22 and intron 1 inversions in 156 Romanian patients with HA. Results: Intron inversion 22 was found in 41.7% of the patients, while intron 1 inversion was detected in 3.2% of the patients. Overall, large intron inversions represented the molecular defect in 44.9% of the studied patients. Our findings are in accord with previously published reports from Eastern Europe countries and with other international studies. The risk of inhibitor development was higher in patients with inversion 1 compared to the patients with HA without any inversion detected. Conclusions: The current study demonstrates the major causative role of large intron inversions in severe HA in Romanian patients. Moreover, our study confirms the contribution of intron 1 inversion in inhibitor development.


Hemophilia A , Humans , Hemophilia A/genetics , Factor VIII/genetics , Introns/genetics , Romania , Chromosome Inversion/genetics
10.
Cell Rep ; 42(8): 112896, 2023 08 29.
Article En | MEDLINE | ID: mdl-37505983

The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.


Chromosome Inversion , Polymorphism, Genetic , Adult , Child , Humans , Chromosome Inversion/genetics , Brain
11.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Article En | MEDLINE | ID: mdl-37311002

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Acclimatization , Chromosome Inversion , Animals , Chromosome Inversion/genetics , Gene Flow , Genomics , Heterozygote , Neoptera
12.
J Hum Genet ; 68(9): 625-634, 2023 Sep.
Article En | MEDLINE | ID: mdl-37161033

Chromosomal rearrangements mostly result from non-allelic homologous recombination mediated by low-copy repeats (LCRs) or segmental duplications (SDs). Recent studies on recombinant chromosome 18 (rec (18)) have focused on diagnoses and clinical phenotypes. We diagnosed two cases of prenatal rec (18) and identified precise breakpoint intervals using karyotype and chromosomal microarray analyses. We analyzed the distribution characteristics of breakpoint repetitive elements to infer rearrangement mechanisms and reviewed relevant literature to identify genetic trends. Among the 12 families with 25 pregnancies analyzed, 68% rec (18), 24% spontaneous abortions, and 8% normal births were reported. In the 17 rec (18) cases, 65% presented maternal origin and 35% were paternal. Short-arm breakpoints at p11.31 were reported in 10 cases, whereas the long-arm breakpoints were located at q21.3 (6 cases) and q12 (4 cases). Breakpoints of pericentric inversions on chromosome 18 are concentrated in p11.31, q21.3, and q12 regions. Rearrangements at 18p11.31 are non-recurrent events. ALUs, LINE1s, and MIRs were enriched at the breakpoint regions (1.85 to 3.42-fold enrichment over the entire chromosome 18), while SDs and LCRs were absent. ALU subfamilies had sequence identities of 85.94% and 83.01% between two pair breakpoints. Small repetitive elements may mediate recombination-coupled DNA repair processes, facilitating rearrangements on chromosome 18. Maternal inversion carriers are more prone to abnormal recombination in prenatal families with rec (18). Recombinant chromosomes may present preferential segregation during gamete formation.


Chromosomes, Human, Pair 18 , Gene Rearrangement , Humans , Pregnancy , Female , Karyotyping , Chromosome Inversion/genetics
13.
Mol Ecol ; 32(13): 3575-3585, 2023 07.
Article En | MEDLINE | ID: mdl-37118648

The study of chromosomal inversion polymorphisms has received much recent attention, particularly in cases where inversions have drastic effects on phenotypes and fitness (e.g. lethality of homozygotes). Less attention has been paid to the question of the maintenance of inversion polymorphisms that show only weak effects. Here, we study the maintenance of such an inversion polymorphism that links 250 genes on chromosome Tgu11 in the zebra finch (Taeniopygia guttata). Based on data from over 6000 captive birds, we estimated the effects of this inversion on a wide range of fitness-related traits. We found that, compared with the ancestral allele A, the inverted allele D had small additive beneficial effects on male siring success and on female fecundity. These fitness-enhancing effects may explain the initial spread of the derived D allele (allele frequency 53%). However, individuals that were homozygous for D had a slightly lower survival rate, which may explain why the D allele has not spread to fixation. We used individual-based simulations to examine how an inversion polymorphism with such antagonistic fitness effects behaves over time. Our results indicate that polymorphisms become stabilized at an intermediate allele frequency if the inversion links an additively beneficial allele of small effect size to a recessive weakly deleterious mutation, overall resulting in weak net heterosis. Importantly, this conclusion remains valid over a wide range of selection coefficients against the homozygous DD (up to lethality), suggesting that the conditions needed to maintain the polymorphism may frequently be met. However, the simulations also suggest that in our zebra finch populations, the estimated recessive deleterious effect of the D allele (on survival in captivity) is not quite large enough to prevent fixation of the D allele in the long run. Estimates of fitness effects from free-living populations are needed to validate these results.


Chromosome Inversion , Songbirds , Animals , Male , Female , Chromosome Inversion/genetics , Polymorphism, Genetic/genetics , Phenotype , Homozygote
14.
PLoS Genet ; 19(4): e1010702, 2023 04.
Article En | MEDLINE | ID: mdl-37053290

Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.


Drosophila melanogaster , Recombinational DNA Repair , Animals , Drosophila melanogaster/genetics , Chromosome Inversion/genetics , DNA Repair/genetics , Gene Conversion , Crossing Over, Genetic , Meiosis/genetics
15.
Phytopathology ; 113(12): 2174-2186, 2023 Dec.
Article En | MEDLINE | ID: mdl-36935376

Erwinia amylovora is a relatively homogeneous species with low genetic diversity at the nucleotide level. However, phenotypic differences and genomic structural variations among E. amylovora strains have been documented. In this study, we identified 10 large chromosomal inversion (LCI) types in the Spiraeoideae-infecting (SI) E. amylovora strains by combining whole genome sequencing and PCR-based molecular markers. It was found that LCIs were mainly caused by homologous recombination events among seven rRNA operons (rrns) in SI E. amylovora strains. Although ribotyping results identified inter- and intra-variations in the internal transcribed spacer (ITS1 and ITS2) regions among rrns, LCIs tend to occur between rrns transcribed in the opposite directions and with the same tRNA content (tRNA-Glu or tRNA-Ile/Ala) in ITS1. Based on the LCI types, physical/estimated replichore imbalance (PRI/ERI) was examined and calculated. Among the 117 SI strains evaluated, the LCI types of Ea1189, CFBP1430, and Ea273 were the most common, with ERI values at 1.31, 7.87, and 4.47°, respectively. These three LCI types had worldwide distribution, whereas the remaining seven LCI types were restricted to North America (or certain regions of the United States). Our results indicated ongoing chromosomal recombination events in the SI E. amylovora population and showed that LCI events are mostly symmetrical, keeping the ERI less than 15°. These findings provide initial evidence about the prevalence of certain LCI types in E. amylovora strains, how LCI occurs, and its potential evolutionary advantage and history, which might help track the movement of the pathogen.


Erwinia amylovora , Erwinia , Rosaceae , Erwinia amylovora/genetics , Chromosome Inversion/genetics , Plant Diseases , RNA, Transfer , Erwinia/genetics
16.
Elife ; 122023 02 28.
Article En | MEDLINE | ID: mdl-36852479

The evolutionary trajectories and genetic architectures underlying ecological divergence with gene flow are poorly understood. Sympatric timing types of the intertidal insect Clunio marinus (Diptera) from Roscoff (France) differ in lunar reproductive timing. One type reproduces at full moon, the other at new moon, controlled by a circalunar clock of yet unknown molecular nature. Lunar reproductive timing is a magic trait for a sympatric speciation process, as it is both ecologically relevant and entails assortative mating. Here, we show that the difference in reproductive timing is controlled by at least four quantitative trait loci (QTL) on three different chromosomes. They are partly associated with complex inversions, but differentiation of the inversion haplotypes cannot explain the different phenotypes. The most differentiated locus in the entire genome, with QTL support, is the period locus, implying that this gene could not only be involved in circadian timing but also in lunar timing. Our data indicate that magic traits can be based on an oligogenic architecture and can be maintained by selection on several unlinked loci.


Biological Evolution , Cell Communication , Humans , Chromosome Inversion/genetics , France , Gene Flow
17.
Nucleic Acids Res ; 51(2): 553-573, 2023 01 25.
Article En | MEDLINE | ID: mdl-36617974

Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families. Here, identifying intra-species variation in genomes of over 35 000 species, we develop a predictive model of gene-altering inversions, revealing key attributes of their genomic sequence attributes, including gene-pseudogene size asymmetry and orientation bias. The model predicted over 11,000 gene-altering loci covering known targeted gene families, as well as novel targeted families including Type II restriction-modification systems, a protein of unknown function, and a fusion-protein containing conjugative-pilus and phage tail domains. Publicly available long-read sequencing datasets validated representatives of these newly predicted inversion-targeted gene families, confirming intra-population genetic heterogeneity. Together, these results reveal gene-altering programmed inversions as a key strategy adopted across the bacterial domain, and highlight programmed inversions that modify Type II restriction-modification systems as a possible new mechanism for maintaining intra-population heterogeneity.


Bacteria , Chromosome Inversion , Humans , Chromosome Inversion/genetics , Bacteria/genetics , Alleles , Genomics/methods , DNA Restriction-Modification Enzymes
18.
Am J Med Genet A ; 191(3): 672-683, 2023 03.
Article En | MEDLINE | ID: mdl-36495134

Human chromosome inversions are types of balanced structural variations, making them difficult to analyze. Thanks to PEM (paired-end sequencing and mapping), there has been tremendous progress in studying inversions. Inversions play an important role as an evolutionary factor, contributing to the formation of gonosomes, speciation of chimpanzees and humans, and inv17q21.3 or inv8p23.1 exhibit the features of natural selection. Both inversions have been related to pathogenic phenotype by directly affecting a gene structure (e.g., inv5p15.1q14.1), regulating gene expression (e.g., inv7q21.3q35) and by predisposing to other secondary arrangements (e.g., inv7q11.23). A polymorphism of human inversions is documented by the InvFEST database (a database that stores information about clinical predictions, validations, frequency of inversions, etc.), but only a small fraction of these inversions is validated, and a detailed analysis is complicated by the frequent location of breakpoints within regions of repetitive sequences.


Evolution, Molecular , Polymorphism, Genetic , Humans , Chromosome Inversion/genetics , Repetitive Sequences, Nucleic Acid , Chromosomes, Human , Chromosomes
19.
Mol Ecol ; 32(4): 854-866, 2023 02.
Article En | MEDLINE | ID: mdl-36461113

Interspecific gene flow (introgression) is an important source of new genetic variation, but selection against it can reinforce reproductive barriers between interbreeding species. We used an experimental approach to trace the role of chromosomal inversions and incompatibility genes in preventing introgression between two partly sympatric Drosophila virilis group species, D. flavomontana and D. montana. We backcrossed F1 hybrid females from a cross between D. flavomontana female and D. montana male with the males of the parental species for two generations and sequenced pools of parental strains and their reciprocal second generation backcross (BC2 mon and BC2 fla) females. Contrasting the observed amount of introgression (mean hybrid index, HI) in BC2 female pools along the genome to simulations under different scenarios allowed us to identify chromosomal regions of restricted and increased introgression. We found no deviation from the HI expected under a neutral null model for any chromosome for the BC2 mon pool, suggesting no evidence for genetic incompatibilities in backcrosses towards D. montana. In contrast, the BC2 fla pool showed high variation in the observed HI between different chromosomes, and massive reduction of introgression on the X chromosome (large X-effect). This observation is compatible with reduced recombination combined with at least one dominant incompatibility locus residing within the X inversion(s). Overall, our study suggests that genetic incompatibilities arising within chromosomal inversions can play an important role in speciation.


Chromosome Inversion , Drosophila , Animals , Female , Male , Chromosome Inversion/genetics , Drosophila/genetics , X Chromosome/genetics , Reproduction
20.
J Med Genet ; 60(5): 505-510, 2023 05.
Article En | MEDLINE | ID: mdl-36411030

Many genetic testing methodologies are biased towards picking up structural variants (SVs) that alter copy number. Copy-neutral rearrangements such as inversions are therefore likely to suffer from underascertainment. In this study, manual review prompted by a virtual multidisciplinary team meeting and subsequent bioinformatic prioritisation of data from the 100K Genomes Project was performed across 43 genes linked to well-characterised skeletal disorders. Ten individuals from three independent families were found to harbour diagnostic inversions. In two families, inverted segments of 1.2/14.8 Mb unequivocally disrupted GLI3 and segregated with skeletal features consistent with Greig cephalopolysyndactyly syndrome. For one family, phenotypic blending was due to the opposing breakpoint lying ~45 kb from HOXA13 In the third family, long suspected to have Marfan syndrome, a 2.0 Mb inversion disrupting FBN1 was identified. These findings resolved lengthy diagnostic odysseys of 9-20 years and highlight the importance of direct interaction between clinicians and data-analysts. These exemplars of a rare mutational class inform future SV prioritisation strategies within the NHS Genomic Medicine Service and similar genome sequencing initiatives. In over 30 years since these two disease-gene associations were identified, large inversions have yet to be described and so our results extend the mutational spectra linked to these conditions.


Bone Diseases, Developmental , Chromosome Inversion , Humans , Base Sequence , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Chromosome Inversion/genetics , Chromosome Mapping , Fibrillin-1/genetics , Genetic Testing , Mutation , Nerve Tissue Proteins/genetics , Zinc Finger Protein Gli3/genetics
...