Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 435
1.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38727808

Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.


Chromosome Segregation , Chromosomes, Mammalian , Kinetochores , Mitosis , Animals , Cell Line , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/metabolism , Kinetochores/metabolism , Spindle Apparatus/metabolism , Potoroidae
2.
Nature ; 623(7986): 347-355, 2023 Nov.
Article En | MEDLINE | ID: mdl-37914934

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Adenosine Triphosphatases , Centromere , DNA-Binding Proteins , Multiprotein Complexes , Animals , Female , Mice/classification , Mice/genetics , Adenosine Triphosphatases/metabolism , Aneuploidy , Centromere/genetics , Centromere/metabolism , Chromosome Segregation , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , DNA-Binding Proteins/metabolism , Hybridization, Genetic , Infertility, Female/genetics , Meiosis/genetics , Multiprotein Complexes/metabolism , Oocytes/metabolism , Prophase/genetics , Cell Nucleus/genetics
3.
Proc Natl Acad Sci U S A ; 120(11): e2210480120, 2023 03 14.
Article En | MEDLINE | ID: mdl-36897969

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.


Cell Cycle Proteins , Chromatin , Animals , Mice , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/metabolism , Chromosomes, Mammalian/metabolism , DNA-Directed RNA Polymerases/genetics , Mammals/genetics
4.
Cell Rep ; 38(7): 110352, 2022 02 15.
Article En | MEDLINE | ID: mdl-35172152

Spatial chromatin organization is crucial for transcriptional regulation and might be particularly important in neurons since they dramatically change their transcriptome in response to external stimuli. We show that stimulation of neurons causes condensation of large chromatin domains. This phenomenon can be observed in vitro in cultured rat hippocampal neurons as well as in vivo in the amygdala and hippocampal neurons. Activity-induced chromatin condensation is an active, rapid, energy-dependent, and reversible process. It involves calcium-dependent pathways but is independent of active transcription. It is accompanied by the redistribution of posttranslational histone modifications and rearrangements in the spatial organization of chromosome territories. Moreover, it leads to the reorganization of nuclear speckles and active domains located in their proximity. Finally, we find that the histone deacetylase HDAC1 is the key regulator of this process. Our results suggest that HDAC1-dependent chromatin reorganization constitutes an important level of transcriptional regulation in neurons.


Chromatin/metabolism , Histone Deacetylase 1/metabolism , Neurons/metabolism , Animals , Calcium Signaling , Chromatin/ultrastructure , Chromosomes, Mammalian/metabolism , Energy Metabolism , Hippocampus/cytology , Long-Term Potentiation , Mice, Inbred C57BL , Rats, Wistar , Transcription, Genetic
5.
J Cell Biol ; 221(4)2022 04 04.
Article En | MEDLINE | ID: mdl-35171230

The molecular circuitry that causes stem cells to exit from pluripotency remains largely uncharacterized. Using chromatin RNA in situ reverse transcription sequencing, we identified Peln1 as a novel chromatin RNA component in the promoter complex of Oct4, a stem cell master transcription factor gene. Peln1 was negatively associated with pluripotent status during somatic reprogramming. Peln1 overexpression caused E14 cells to exit from pluripotency, while Peln1 downregulation induced robust reprogramming. Mechanistically, we discovered that Peln1 interacted with the Oct4 promoter and recruited the DNA methyltransferase DNMT3A. By de novo altering the epigenotype in the Oct4 promoter, Peln1 dismantled the intrachromosomal loop that is required for the maintenance of pluripotency. Using RNA reverse transcription-associated trap sequencing, we showed that Peln1 targets multiple pathway genes that are associated with stem cell self-renewal. These findings demonstrate that Peln1 can act as a new epigenetic player and use a trans mechanism to induce an exit from the pluripotent state in stem cells.


Chromosomes, Mammalian/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Animals , Cell Line , Cellular Reprogramming/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A/metabolism , Gene Knockdown Techniques , Humans , Mice , Octamer Transcription Factor-3 , Protein Binding , RNA, Long Noncoding/genetics
6.
Cell Mol Life Sci ; 79(1): 22, 2022 Jan 03.
Article En | MEDLINE | ID: mdl-34981210

The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells and further understanding of the fundamental characteristics of FGSCs.


CCCTC-Binding Factor/metabolism , Genome , Imaging, Three-Dimensional , Oogonial Stem Cells/metabolism , Adult Stem Cells/metabolism , Animals , Base Sequence , Cell Shape , Chromatin/metabolism , Chromosomes, Mammalian/metabolism , Female , Induced Pluripotent Stem Cells/metabolism , Male , Mice, Inbred C57BL , Oogonial Stem Cells/cytology
7.
Cells ; 10(12)2021 12 01.
Article En | MEDLINE | ID: mdl-34943883

Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene-diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed.


Centromere/metabolism , Chromosomes, Mammalian/metabolism , DNA/metabolism , Animals , DNA, Satellite/metabolism , Histones/metabolism , Meiosis , Mice, Inbred BALB C , Mice, Inbred CBA , X Chromosome
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article En | MEDLINE | ID: mdl-34830152

Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.


Cell Cycle , Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomes, Mammalian/metabolism , DNA-Binding Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Animals , Chromatin/genetics , Chromosomes, Mammalian/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/isolation & purification , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/isolation & purification , Liquid-Liquid Extraction , Phase Transition
9.
Aging Cell ; 20(11): e13489, 2021 11.
Article En | MEDLINE | ID: mdl-34704342

A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved. Unlike in mitosis, the SAC in oocytes is desensitized, allowing chromosome segregation in the presence of improperly aligned chromosomes. Whether SAC integrity further deteriorates with advancing maternal age, and if this decline contributes to increased segregation errors remains a fundamental question. In somatic cells, activation of the SAC depends upon Aurora kinase B (AURKB), which functions to monitor kinetochore-microtubule attachments and recruit SAC regulator proteins. In mice, oocyte-specific deletion of AURKB (Aurkb cKO) results in an increased production of aneuploid metaphase II-arrested eggs and premature age-related infertility. Here, we aimed to understand the cause of the short reproductive lifespan and hypothesized that SAC integrity was compromised. In comparing oocytes from young and sexually mature Aurkb cKO females, we found that SAC integrity becomes compromised rapidly with maternal age. We show that the increased desensitization of the SAC is driven by reduced expression of MAD2, ZW10 and Securin proteins, key contributors to the SAC response pathway. The reduced expression of these proteins is the result of altered protein homeostasis, likely caused by the accumulation of reactive oxygen species. Taken together, our results demonstrate a novel function for AURKB in preserving the female reproductive lifespan possibly by protecting oocytes from oxidative stress.


Aging/metabolism , Aurora Kinase B/metabolism , M Phase Cell Cycle Checkpoints/genetics , Meiosis/genetics , Reproduction/genetics , Signal Transduction/genetics , Spindle Apparatus/metabolism , Aging/genetics , Aneuploidy , Animals , Aurora Kinase B/genetics , Aurora Kinase C/genetics , Aurora Kinase C/metabolism , Chromosome Segregation/genetics , Chromosomes, Mammalian/metabolism , Female , Gene Deletion , Maternal Age , Mice , Mice, Inbred C57BL , Mice, Knockout , Oocytes/metabolism
10.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article En | MEDLINE | ID: mdl-34502420

Chromosome instability (CIN) consists of high rates of structural and numerical chromosome abnormalities and is a well-known hallmark of cancer. Aluminum is added to many industrial products of frequent use. Yet, it has no known physiological role and is a suspected human carcinogen. Here, we show that V79 cells, a well-established model for the evaluation of candidate chemical carcinogens in regulatory toxicology, when cultured in presence of aluminum-in the form of aluminum chloride (AlCl3) and at concentrations in the range of those measured in human tissues-incorporate the metal in a dose-dependent manner, predominantly accumulating it in the perinuclear region. Intracellular aluminum accumulation rapidly leads to a dose-dependent increase in DNA double strand breaks (DSB), in chromosome numerical abnormalities (aneuploidy) and to proliferation arrest in the G2/M phase of the cell cycle. During mitosis, V79 cells exposed to aluminum assemble abnormal multipolar mitotic spindles and appear to cluster supernumerary centrosomes, possibly explaining why they accumulate chromosome segregation errors and damage. We postulate that chronic aluminum absorption favors CIN in mammalian cells, thus promoting carcinogenesis.


Aluminum Chloride , Chromosomal Instability/drug effects , Chromosomes, Mammalian/metabolism , DNA Breaks, Double-Stranded , G2 Phase Cell Cycle Checkpoints/drug effects , M Phase Cell Cycle Checkpoints/drug effects , Aluminum/pharmacokinetics , Aluminum/toxicity , Aluminum Chloride/pharmacokinetics , Aluminum Chloride/toxicity , Animals , Cell Line , Centromere/metabolism , Cricetulus
11.
Blood ; 138(9): 790-805, 2021 09 02.
Article En | MEDLINE | ID: mdl-34473231

Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases. We report that CUX1 has a critical early role in the DNA repair process in HSPCs. Mechanistically, CUX1 recruits the histone methyltransferase EHMT2 to DNA breaks to promote downstream H3K9 and H3K27 methylation, phosphorylated ATM retention, subsequent γH2AX focus formation and propagation, and, ultimately, 53BP1 recruitment. Despite significant unrepaired DNA damage sustained in CUX1-deficient murine HSPCs after cytotoxic exposures, they continue to proliferate and expand, mimicking clonal hematopoiesis in patients postchemotherapy. As a consequence, preexisting CUX1 deficiency predisposes mice to highly penetrant and rapidly fatal therapy-related erythroleukemias. These findings establish the importance of epigenetic regulation of HSPC DNA repair and position CUX1 as a gatekeeper in myeloid transformation.


Chromosomes, Mammalian , DNA Repair , Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Homeodomain Proteins , Leukemia, Erythroblastic, Acute , Neoplasm Proteins , Neoplasms, Second Primary , Nuclear Proteins , Repressor Proteins , Animals , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Clonal Hematopoiesis , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/metabolism , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
12.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Article En | MEDLINE | ID: mdl-34433012

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Centromere Protein B/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Alleles , Amino Acid Sequence , Animals , Biological Evolution , CRISPR-Cas Systems/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomes, Mammalian/metabolism , Female , Heterochromatin/metabolism , Kinetochores/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Oocytes/metabolism , Protein Domains
13.
J Clin Invest ; 131(7)2021 04 01.
Article En | MEDLINE | ID: mdl-33792563

Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.32 alter splicing and expression of PAR-1a/microtubule affinity regulating kinase 3 (MARK3), a conserved serine/threonine kinase known to regulate bioenergetics, cell division, and polarity. Mice lacking Mark3 either globally or selectively in osteoblasts have increased bone mass at maturity. RNA profiling from Mark3-deficient osteoblasts suggested changes in the expression of components of the Notch signaling pathway. Mark3-deficient osteoblasts exhibited greater matrix mineralization compared with controls that was accompanied by reduced Jag1/Hes1 expression and diminished downstream JNK signaling. Overexpression of Jag1 in Mark3-deficient osteoblasts both in vitro and in vivo normalized mineralization capacity and bone mass, respectively. Together, these findings reveal a mechanism whereby genetically regulated alterations in Mark3 expression perturb cell signaling in osteoblasts to influence bone mass.


Bone Density/genetics , Bone and Bones/metabolism , Chromosomes, Mammalian , Genetic Variation , Osteoblasts/metabolism , Protein Serine-Threonine Kinases , Signal Transduction/genetics , Animals , Bone and Bones/cytology , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Mice , Mice, Knockout , Organ Size/genetics , Osteoblasts/cytology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
14.
Biochem Biophys Res Commun ; 549: 91-97, 2021 04 16.
Article En | MEDLINE | ID: mdl-33667714

Mammalian cyclin A-CDK (cyclin-dependent kinase) activity during mitotic exit is regulated by two redundant pathways, cyclin degradation and CDK inhibitors (CKIs). Ectopic expression of a destruction box-truncated (thereby stabilized) mutant of cyclin A in the mouse embryonic fibroblasts nullizygous for three CKIs (p21, p27, and p107) results in constitutive activation ("hyperactivation") of cyclin A-CDK and induces rapid tetraploidization, suggesting loss of the two redundant pathways causes genomic instability. To elucidate the mechanism underlying teraploidization by hyperactive cyclin A-CDK, we first examined if the induction of tetraploidization depends on specific cell cycle stage(s). Arresting the cell cycle at either S phase or M phase blocked the induction of tetraploidization, which was restored by subsequent release from the arrest. These results suggest that both S- and M-phase progressions are necessary for the tetraploidization by hyperactive cyclin A-CDK and that the tetraploidization is not caused by chromosome endoreduplication but by mitotic failure. We also observed that the induction of tetraploidization is associated with excessive duplication of centrosomes, which was suppressed by S-phase but not M-phase block, suggesting that hyperactive cyclin A-CDK promotes centrosome overduplication during S phase. Time-lapse microscopy revealed that hyperactive cyclin A-CDK can lead cells to bypass cell division and enter pseudo-G1 state. These observations implicate that hyperactive cyclin A-CDK causes centrosome overduplication, which leads to mitotic slippage and subsequent tetraploidization.


Centrosome/metabolism , Chromosomes, Mammalian/metabolism , Cyclin A/metabolism , Cyclin-Dependent Kinases/metabolism , Polyploidy , Animals , Cell Cycle Proteins/metabolism , Cyclin A/genetics , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Humans , Mice , Mitosis , Mutation/genetics , S Phase
15.
Cells ; 10(2)2021 01 29.
Article En | MEDLINE | ID: mdl-33572832

Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.


DNA Replication Timing , DNA/metabolism , Mammals/metabolism , Methyltransferases/metabolism , Animals , Chromosomes, Mammalian/metabolism , DNA Methylation/genetics , DNA Replication Timing/genetics , Genome , Heterochromatin/metabolism , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/metabolism , Transcription, Genetic
16.
RNA ; 27(1): 106-121, 2021 01.
Article En | MEDLINE | ID: mdl-33127860

Telomeric repeat-containing RNA (TERRA) molecules play important roles at telomeres, from heterochromatin regulation to telomerase activity control. In human cells, TERRA is transcribed from subtelomeric promoters located on most chromosome ends and associates with telomeres. The origin of mouse TERRA molecules is, however, unclear, as transcription from the pseudoautosomal PAR locus was recently suggested to account for the vast majority of TERRA in embryonic stem cells (ESC). Here, we confirm the production of TERRA from both the chromosome 18q telomere and the PAR locus in mouse embryonic fibroblasts, ESC, and various mouse cancer and immortalized cell lines, and we identify two novel sources of TERRA on mouse chromosome 2 and X. Using various approaches, we show that PAR-TERRA molecules account for the majority of TERRA transcripts, displaying an increase of two to four orders of magnitude compared to the telomeric 18q transcript. Finally, we present a SILAC-based pull-down screen revealing a large overlap between TERRA-interacting proteins in human and mouse cells, including PRC2 complex subunits, chromatin remodeling factors, DNA replication proteins, Aurora kinases, shelterin complex subunits, Bloom helicase, Coilin, and paraspeckle proteins. Hence, despite originating from distinct genomic regions, mouse and human TERRA are likely to play similar functions in cells.


Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Messenger/genetics , Telomere/chemistry , Transcriptome , Animals , Aurora Kinases/genetics , Aurora Kinases/metabolism , Cell Line, Tumor , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/metabolism , Computational Biology/methods , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Regulatory Networks , Granulocyte Precursor Cells/cytology , Granulocyte Precursor Cells/metabolism , HeLa Cells , Humans , Mice , Monocytes/cytology , Monocytes/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/classification , RNA, Messenger/metabolism , RNA-Binding Proteins/classification , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Shelterin Complex , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
17.
Methods Mol Biol ; 2153: 267-286, 2021.
Article En | MEDLINE | ID: mdl-32840786

Crossing-over between homologous chromosomes is essential for accurate chromosome segregation at anaphase-I of meiosis. Defective crossing-over is associated with infertility, pregnancy miscarriage, and congenital disease. This chapter presents optimized protocols for the analysis of meiotic crossovers at the cytological level in spermatocytes and oocytes from mouse. The first approach employs immunocytology to detect MLH1, a DNA mismatch-repair protein that specifically marks crossover sites in the pachytene stage of meiotic prophase-I. These immunocytological methods have general utility for the analysis of other recombination steps, such as initiation and DNA strand exchange. The second approach visualizes chiasmata, the points of physical exchange between homologous chromosomes that are present during the diakinesis and metaphase-I stages. Both approaches are readily adaptable to the analysis of crossing over in other vertebrate species.


Crossing Over, Genetic , MutL Protein Homolog 1/metabolism , Oocytes/cytology , Spermatocytes/cytology , Aneuploidy , Animals , Cells, Cultured , Chromosomes, Mammalian/metabolism , Female , Immunohistochemistry , Male , Mice , Oocytes/metabolism , Pachytene Stage , Spermatocytes/metabolism
18.
Nature ; 589(7840): 103-109, 2021 01.
Article En | MEDLINE | ID: mdl-33239783

Mammalian telomeres protect chromosome ends from aberrant DNA repair1. TRF2, a component of the telomere-specific shelterin protein complex, facilitates end protection through sequestration of the terminal telomere repeat sequence within a lariat T-loop structure2,3. Deleting TRF2 (also known as TERF2) in somatic cells abolishes T-loop formation, which coincides with telomere deprotection, chromosome end-to-end fusions and inviability3-9. Here we establish that, by contrast, TRF2 is largely dispensable for telomere protection in mouse pluripotent embryonic stem (ES) and epiblast stem cells. ES cell telomeres devoid of TRF2 instead activate an attenuated telomeric DNA damage response that lacks accompanying telomere fusions, and propagate for multiple generations. The induction of telomere dysfunction in ES cells, consistent with somatic deletion of Trf2 (also known as Terf2), occurs only following the removal of the entire shelterin complex. Consistent with TRF2 being largely dispensable for telomere protection specifically during early embryonic development, cells exiting pluripotency rapidly switch to TRF2-dependent end protection. In addition, Trf2-null embryos arrest before implantation, with evidence of strong DNA damage response signalling and apoptosis specifically in the non-pluripotent compartment. Finally, we show that ES cells form T-loops independently of TRF2, which reveals why TRF2 is dispensable for end protection during pluripotency. Collectively, these data establish that telomere protection is solved by distinct mechanisms in pluripotent and somatic tissues.


Chromosomes, Mammalian/metabolism , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Telomere/metabolism , Telomeric Repeat Binding Protein 2/deficiency , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cell Survival , Chromosomes, Mammalian/genetics , Germ Layers/cytology , Germ Layers/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Telomere/genetics , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism
19.
Mol Biol Cell ; 32(1): 1-14, 2021 01 01.
Article En | MEDLINE | ID: mdl-33175657

Meiotic recombination in most mammals requires recombination hotspot activation through the action of the histone 3 Lys-4 and Lys-36 methyltransferase PRDM9 to ensure successful double-strand-break initiation and repair. Here we show that EWSR1, a protein whose role in meiosis was not previously clarified in detail, binds to both PRDM9 and pREC8, a phosphorylated meiosis-specific cohesin, in male meiotic cells. We created a Ewsr1 conditional knockout mouse model to deplete EWSR1 before the onset of meiosis and found that absence of EWSR1 causes meiotic arrest with decreased histone trimethylation at meiotic hotspots, impaired DNA double-strand-break repair, and reduced crossover number. Our results demonstrate that EWSR1 is essential for promoting PRDM9-dependent histone methylation and normal meiotic progress, possibly by facilitating the linking between PRDM9-bound hotspots and the nascent chromosome axis through its component cohesin pREC8.


Cell Cycle Proteins/metabolism , Chromosomes, Mammalian/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , RNA-Binding Protein EWS/metabolism , Recombination, Genetic/genetics , Animals , Chromosomal Proteins, Non-Histone , Crossing Over, Genetic , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Male , Meiosis , Methylation , Mice, Knockout , Protein Binding , Protein Multimerization , Spermatozoa/metabolism , Synaptonemal Complex/metabolism , Cohesins
20.
Development ; 148(2)2021 01 18.
Article En | MEDLINE | ID: mdl-33318146

Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.


Infertility, Female/metabolism , Oocytes/metabolism , RNA-Binding Proteins/metabolism , Alternative Splicing/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cell Cycle Checkpoints , Cell Nucleus/metabolism , Chromosomes, Mammalian/metabolism , Female , Germ-Line Mutation/genetics , Infertility, Female/complications , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Male , Meiosis , Metaphase , Mice, Inbred C57BL , Mice, Knockout , Microtubules/metabolism , Models, Biological , Primary Ovarian Insufficiency/complications , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spindle Apparatus/metabolism
...