Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Mycoses ; 67(3): e13710, 2024 Mar.
Article En | MEDLINE | ID: mdl-38414346

BACKGROUND: Onychomycoses are difficult-to-treat fungal infections with high relapse rates. Combining oral and topical antifungal drugs is associated with higher success rates. Additive or synergistic modes of action are expected to enhance treatment success rates. OBJECTIVES: Investigation of the combined effects of antifungal drugs in vitro with different modes of action and application on clinical isolates from mycotic nails. METHODS: Isolates of Trichophyton rubrum, Trichophyton interdigitale and Scopulariopsis brevicaulis were collected from infected toenail specimens of patients with onychomycosis. Susceptibility testing was performed in 96-well polystyrene plates using a standard stepwise microdilution protocol. Additive or synergistic activity at varying concentrations was investigated by the checkerboard method. RESULTS: Combining terbinafine with amorolfine tended to be more effective than terbinafine in conjunction with ciclopirox. In most combinations, additive effects were observed. Synergy was detected in combinations with involving amorolfine in S. brevicaulis. These additive and synergistic interactions indicate that combined therapy with topical amorolfine and oral terbinafine is justified. Sublimation of amorolfine (and terbinafine) may enhance the penetration in and through the nail plate, and support treatment efficacy. CONCLUSIONS: These in vitro results support the notion that combining oral terbinafine and topical amorolfine is beneficial to patients with onychomycosis, particularly if the pathogen is a non-dermatophyte fungus such as S. brevicaulis.


Morpholines , Onychomycosis , Humans , Terbinafine/pharmacology , Terbinafine/therapeutic use , Onychomycosis/drug therapy , Onychomycosis/microbiology , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Antifungal Agents/therapeutic use , Naphthalenes
2.
Comput Methods Biomech Biomed Engin ; 27(6): 765-774, 2024 May.
Article En | MEDLINE | ID: mdl-37781969

The Ni and Co doping effect on the ciclopirox (CPX) drug delivery performance of a ZnO nanosheet (ZnO-NS) was investigated theoretically. Doping Ni and Co metals into the ZnO-NS increased the adsorption energy of CPX from -7.9 to -27.4 and -31.7 kcal/mol, respectively. The CPX adsorption reduced the ZnO-NS gap (Eg) from 3.81 to 3.46 eV, while the CPX adsorption reduced the Eg of the Ni- and Co-doped ZnO-NS from 2.74 and 2.68 eV to 1.87 and 1.71 eV, respectively. The CPX adsorption performance increased after doping process. A drug release mechanism was introduced in cancerous tissues based on the PH. .


Antineoplastic Agents , Zinc Oxide , Ciclopirox/pharmacology , Density Functional Theory , Metals
3.
Immunopharmacol Immunotoxicol ; 45(6): 701-708, 2023 Dec.
Article En | MEDLINE | ID: mdl-37606515

OBJECTIVE: Septic shock, the most severe stage of sepsis, is a deadly inflammatory disorder with high mortality. Ciclopirox (CPX) is a broad-spectrum antimycotic agent which also exerts anti-inflammatory effects in human diseases. However, whether CPX can relieve inflammatory response in LPS-induced septic shock remains unclear. MATERIALS AND METHODS: Male C57BL/6 mice LPS were injected intraperitoneally with LPS to simulate septic shock in vivo. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were subject to LPS treatment to simulate septic shock in vitro. ELISA was applied to detect the level of pro-inflammatory cytokines. Cell viability was assessed by CCK-8 assay. Protein levels was detected by western blotting. RESULTS: CPX enhanced the survival rate and attenuated inflammation in mice with LPS-induced septic shock. Similarly, CPX dose-dependently mitigated LPS-induced inflammation in BMDMs. It was also found that Sortilin 1 (SORT1) was upregulated in both in vivo and in vitro models of LPS-induced septic shock. In addition, SORT1 overexpression counteracted the alleviative effects of CPX on the inflammation response of LPS-challenged BMDMs by activating the Wnt/ß-Catenin signaling. Furthermore, BML-284 (a Wnt/ß-Catenin agonist) treatment also abrogated CPX-mediated moderation of LPS-triggered inflammatory reaction in BMDMs. CONCLUSIONS: In sum, we found that CPX protected against LPS-induced septic shock by mitigating inflammation via SORT1-mediated Wnt/ß-Catenin signaling pathway.


Adaptor Proteins, Vesicular Transport , Ciclopirox , Inflammation , Shock, Septic , Wnt Signaling Pathway , Ciclopirox/pharmacology , Shock, Septic/chemically induced , Shock, Septic/drug therapy , Lipopolysaccharides , Male , Animals , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Macrophages/drug effects , Adaptor Proteins, Vesicular Transport/genetics , Inflammation/drug therapy
4.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Article En | MEDLINE | ID: mdl-37487020

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Hematopoietic Stem Cells , Iron , Humans , Ciclopirox/pharmacology , Ciclopirox/metabolism , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Antigens, CD34/metabolism , Ethanolamines/metabolism , Ethanolamines/pharmacology
5.
Eur J Dermatol ; 33(1): 19-24, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-37154811

BACKGROUND: Onychomycosis affects up to 50% of patients in the older population. OBJECTIVES: This study aimed to explore heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale as pathogens of onychomycosis. MATERIALS & METHODS: The fungi were heated in sterile saline solution up to 100°C for five or 10 minutes with or without additional previous treatment with 1% ciclopirox solution or chitinase and 1,3 -galactidase or for 45 minutes at 40°C or 60°C with washing powder. Subsequently, the fungi were cultured and regrowth was assessed after one week. RESULTS: After heating T. rubrum for five minutes at 60°C, growth was completely inhibited. After heating T. interdigitale for five minutes at 60°C, all of the samples regrew, and at 95°C, none of the samples regrew. No difference between five and 10-minute heating was observed. Previous incubation with 1% ciclopirox solution for 24 hours inhibited the growth of T. rubrum completely. T. interdigitale was still able to regrow to 100% after five minutes at 40°C, to 33% after 60°C, and to 22% after 80°C. Incubation for 45 minutes with washing powder solution at 40°C or 60°C did not lead to significant growth reduction of T. rubrum or interdigitale. Two hours incubation with -1,3-glucanase and chitinase prior to five minutes of heating to 60°C and 80°C reduced the heat resistance of T. interdigitale; growth was inhibited in 56% and 100% of the samples, respectively. CONCLUSION: The heat resistance of T. rubrum and interdigitale should be considered using non-medical thermal treatment.


Onychomycosis , Humans , Trichophyton , Ciclopirox/pharmacology , Hot Temperature , Powders
6.
PLoS One ; 18(5): e0285941, 2023.
Article En | MEDLINE | ID: mdl-37196004

The Hepatitis B virus (HBV) core protein is an attractive target for preventing capsid assembly and viral replication. Drug repurposing strategies have introduced several drugs targeting HBV core protein. This study used a fragment-based drug discovery (FBDD) approach to reconstruct a repurposed core protein inhibitor to some novel antiviral derivatives. Auto Core Fragment in silico Screening (ACFIS) server was used for deconstruction-reconstruction of Ciclopirox in complex with HBV core protein. The Ciclopirox derivatives were ranked based on their free energy of binding (ΔGB). A quantitative structure affinity relationship (QSAR) was established on the Ciclopirox derivatives. The model was validated by a Ciclopirox-property-matched decoy set. A principal component analysis (PCA) was also assessed to define the relationship of the predictive variable of the QSAR model. 24-derivatives with a ΔGB (-16.56±1.46 Kcal.mol-1) more than Ciclopirox was highlighted. A QSAR model with a predictive power of 88.99% (F-statistics = 9025.78, corrected df(25), Pr > F = 0.0001) was developed by four predictive descriptors (ATS1p, nCs, Hy, F08[C-C]). The model validation showed no predictive power for the decoy set (Q2 = 0). No significant correlation was observed between predictors. By directly attaching to the core protein carboxyl-terminal domain, Ciclopirox derivatives may be able to suppress HBV virus assembly and subsequent viral replication inhibition. Hydrophobic residue Phe23 is a critical amino acid in the ligand binding domain. These ligands share the same physicochemical properties that lead to the development of a robust QSAR mode. The same strategy may also be used for future drug discovery of viral inhibitors.


Hepatitis B , Virus Assembly , Humans , Hepatitis B virus/metabolism , Ciclopirox/pharmacology , Virus Replication , Antiviral Agents/chemistry , Capsid Proteins/metabolism , Drug Discovery , Viral Core Proteins/chemistry
7.
Biochem Biophys Res Commun ; 659: 10-19, 2023 06 04.
Article En | MEDLINE | ID: mdl-37030020

The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.


Leukemia , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Ciclopirox/pharmacology , Ciclopirox/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Killer Cells, Natural/metabolism , Signal Transduction , Leukemia/drug therapy , Leukemia/metabolism , Cell Line, Tumor
8.
Cell Death Dis ; 13(11): 1007, 2022 11 28.
Article En | MEDLINE | ID: mdl-36443287

Ciclopirox (CPX), an antifungal drug, has recently been identified as a promising agent for cancer treatment. However, the effects and underlying mechanism of CPX as an antitumor agent of gastric cancer (GC) remain largely unknown. Here, we found that CPX dramatically suppresses GC xenograft growth in vitro via inhibiting proliferation and stimulating autophagic cell death rather than apoptosis. Moreover, CPX (20 mg/kg, intraperitoneally) substantially inhibits GC xenograft tumor growth in vivo. Mechanistically, CPX promotes growth arrest and autophagic cell death through suppressing the phosphorylation of signal transducers and activators of transcription 3 (STAT3) at tyrosine 705 (Tyr705) and serine 727 (Ser727) sites, respectively. Additionally, CPX induces STAT3 ubiquitination, which subsequently leads to a decrease in the p-STAT3 (Ser727) level. On the other hand, CPX represses the p-STAT3 (Tyr705) level via p-Src (Tyr416) inhibition. Collectively, our findings unmask a novel mechanism by which CPX regulates growth and autophagic cell death in GC cells via regulating the phosphorylation of STAT3 both at Tyr705 and Ser727 residues, and suggest that CPX may be a potential treatment for GC.


Autophagic Cell Death , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Ciclopirox/pharmacology , Phosphorylation , Serine , Tyrosine , STAT3 Transcription Factor
9.
Int J Pharm ; 628: 122267, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36209980

Bacterial nanocellulose has been widely investigated for wound healing applications, mainly due to its moisturizing capabilities and biocompatibility. Even though the topical therapy of nail diseases could benefit from these properties, this application has not yet been investigated. Therefore, actively hydrating nail patches based on bacterial nanocellulose were developed to improve the delivery of ciclopirox olamine and Boswellia serrata extract through the nail plate. The nanocellulose matrix was used to enable the application of hydration enhancing solutions based on glycerol and urea as a mechanically stable patch. While the favorable mechanical characteristics of the material remained unchanged, an increase of the incorporated glycerol concentration enhanced the transparency and wetting capacity of the patches. A biphasic drug release from the patches could be observed for drug and extract with a faster release for the hydrophilic ciclopirox olamine. High glycerol concentrations correlated with increased cumulative release and permeation through keratin films for drug and extract, demonstrating the hydration driven permeation enhancement. Patches containing ciclopirox olamine showed strong antimycotic effects against relevant pathogens for onychomycosis. The present finding proposed the combination of bacterial nanocellulose with glycerol, urea and different drug as a promising platform for the local treatment of nail diseases.


Nail Diseases , Onychomycosis , Humans , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Antifungal Agents , Glycerol , Pyridones , Onychomycosis/drug therapy , Nails , Nail Diseases/drug therapy , Administration, Topical , Excipients/pharmacology , Urea , Plant Extracts/pharmacology
10.
Med Mycol ; 60(8)2022 Aug 18.
Article En | MEDLINE | ID: mdl-35896502

Onychomycosis is a nail infection caused by Trichophyton interdigitale and other fungi, which can be treated with topical amorolfine (AMR) and ciclopirox olamine (CPX). Although these drugs are widely used, little is known about the role of reactive oxygen (ROS) and nitrogen (RNS) in their mechanism of action. To better understand the effects of AMR and CPX in dermatophytes, we evaluated whether they act through the production of ROS and peroxynitrite (PRN). We tested a set of strains, all susceptible to AMR and CPX, and these antifungals significantly reduced T. interdigitale viability within 24 h. This effect occurred concomitantly with reduced ergosterol, increased production of ROS and PRN, and consequently increased lipid peroxidation. Together, these mechanisms lead to cell damage and fungal death. These fungicidal effects were abolished when PRN and superoxide scavengers were used in the assays, demonstrating the role of these species in the mechanism of action. We also studied the antioxidant system when T. interdigitale was exposed to AMR and CPX. Interestingly, superoxide dismutase and catalase inhibition lead to altered ROS and PRN production, lipid peroxidation, and ergosterol levels. In fact, the combination of AMR or CPX with a superoxide dismutase inhibitor was antagonistic. Together, these data demonstrate the importance of ROS and PRN in the antifungal action of AMR and CPX against the evaluated T. interdigitale strains. LAY SUMMARY: Onychomycosis is a nail infection, which can be treated with amorolfine and ciclopirox olamine. Here we demonstrate that these drugs exhibit antifungal activity also through the production of oxidative and nitrosative radicals.


Arthrodermataceae , Onychomycosis , Animals , Antifungal Agents/therapeutic use , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Ergosterol , Microbial Sensitivity Tests/veterinary , Morpholines , Nitrogen , Onychomycosis/microbiology , Onychomycosis/veterinary , Oxygen , Reactive Oxygen Species , Superoxide Dismutase , Trichophyton
11.
Eur J Med Chem ; 238: 114443, 2022 Aug 05.
Article En | MEDLINE | ID: mdl-35635945

We previously showed that the anti-fungal drug ciclopirox olamine effectively inhibits replication of herpes simplex virus (HSV)-1 and HSV-2. Given the rise of HSV strains that are resistant to nucleos(t)ide analog treatment, as well as the incomplete efficacy of nucleos(t)ide analogs, new inhibitory compounds must be explored for potential use in the treatment of HSV infection. In the present study, we analyzed 44 compounds derived from the core structure of ciclopirox olamine for inhibitory activity against HSV. Thirteen of these derivative compounds inhibited HSV-2 replication by > 1000- to ∼100,000-fold at 1 µM and displayed EC50 values lower than that of acyclovir, as well as low cytotoxicity, indicating their strong therapeutic potential. Through structural comparison, we also provide evidence for the importance of various structural motifs to the efficacy of ciclopirox and its derivatives, namely hydrophobic groups at R4 and R6 of the ciclopirox core structure. Like ciclopirox, representative analogs exhibit some oral bioavailability but are rapidly cleared in vivo. Together, these results will guide further development of N-hydroxypyridones as HSV therapeutics.


Herpes Simplex , Herpesvirus 1, Human , Acyclovir/chemistry , Acyclovir/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antiviral Agents/therapeutic use , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Herpes Simplex/drug therapy , Herpesvirus 2, Human , Humans , Virus Replication
12.
Redox Biol ; 53: 102339, 2022 07.
Article En | MEDLINE | ID: mdl-35636017

Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics.


Uterine Cervical Neoplasms , Apoptosis , Autophagy , Ciclopirox/pharmacology , Female , Glycogen/pharmacology , Humans , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
13.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35563420

Drug repurposing is an attractive strategy for developing new antibacterial molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence activities of eight FDA-approved "non-antibiotic" drugs, comparatively to tobramycin, against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and MBC values were measured by broth microdilution method. Time-kill kinetics was studied by the macro dilution method, and synergy studies were performed by checkerboard microdilution assay. The activity against preformed biofilms was measured by crystal violet and viable cell count assays. The effects on gene expression were studied by real-time quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P. aeruginosa planktonic cells and therefore underwent further evaluation. Time-kill assays indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have the potential for bacterial eradication, although with strain-dependent efficacy. Ciclopirox was the most effective against the viability of the preformed biofilm. A similar activity was observed for other drugs, although they stimulate extracellular polymeric substance production. Ribavirin showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs and tobramycin generally caused hyperexpression of the virulence traits tested, except for actinomycin D, which downregulated the expression of alkaline protease and alginate polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclopirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protective effects.


Biofilms , Ciclopirox , Cystic Fibrosis , Pseudomonas Infections , Ribavirin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ciclopirox/pharmacology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Dactinomycin/pharmacology , Drug Repositioning , Extracellular Polymeric Substance Matrix , Fluorouracil/pharmacology , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Ribavirin/pharmacology , Tobramycin/pharmacology
14.
Cell Commun Signal ; 20(1): 37, 2022 03 24.
Article En | MEDLINE | ID: mdl-35331268

BACKGROUND: Lung cancer remains a major cause of cancer-related mortality throughout the world at present. Repositioning of existing drugs for other diseases is a promising strategy for cancer therapies, which may rapidly advance potentially promising agents into clinical trials and cut down the cost of drug development. Ciclopirox (CPX), an iron chelator commonly used to treat fungal infections, which has recently been shown to have antitumor activity against a variety of cancers including both solid tumors and hematological malignancies in vitro and in vivo. However, the effect of CPX on non-small cell lung cancer (NSCLC) and the underlying mechanism is still unclear. METHODS: CCK-8, clonal formation test and cell cycle detection were used to observe the effect of inhibitor on the proliferation ability of NSCLC cells. The effects of CPX on the metastasis ability of NSCLC cells were analyzed by Transwell assays. Apoptosis assay was used to observe the level of cells apoptosis. The role of CPX in energy metabolism of NSCLC cells was investigated by reactive oxygen species (ROS) detection, glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) experiments. Western blot was used to examine the protein changes. RESULTS: We report that CPX inhibits NSCLC cell migration and invasion abilities through inhibiting the epithelial-mesenchymal transition, impairing cellular bioenergetics, and promoting reactive oxygen species to activate endoplasmic reticulum (ER) stress-induced apoptotic cell death. Moreover, CPX intraperitoneal injection can significantly inhibit NSCLC growth in vivo in a xenograft model. CONCLUSIONS: Our study revealed that CPX targets cellular bioenergetics and activates unfolded protein response in ER to drive apoptosis in NSCLC cells, indicating that CPX may be a potential therapeutic drug for the treatment of NSCLC. Video Abstract.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Apoptosis , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Energy Metabolism , Humans , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism
15.
Microbiologyopen ; 11(1): e1257, 2022 02.
Article En | MEDLINE | ID: mdl-35212482

Dermal fungal infections seem to have increased over recent years. There is further a shift from anthropophilic dermatophytes to a growing prevalence of zoophilic species and the emergence of resistant strains. New antifungals are needed to combat these fungi and their resting spores. This study aimed to investigate the sporicidal effects of sertaconazole nitrate using microplate laser nephelometry against the microconidia of Trichophyton, chlamydospores of Epidermophyton, blastospores of Candida, and conidia of the mold Scopulariopsis brevicaulis. The results obtained were compared with those from ciclopirox olamine and terbinafine. The sporicidal activity was further determined using infected three-dimensional full skin models to determine the antifungal effects in the presence of human cells. Sertaconazole nitrate inhibited the growth of dermatophytes, molds, and yeasts. Ciclopirox olamine also had good antifungal activity, although higher concentrations were needed compared to sertaconazole nitrate. Terbinafine was highly effective against most dermatophytes, but higher concentrations were required to kill the resistant strain Trichophyton indotineae. Sertaconazole nitrate, ciclopirox olamine, and terbinafine had no negative effects on full skin models. Sertaconazole nitrate reduced the growth of fungal and yeast spores over 72 h. Ciclopirox olamine and terbinafine also inhibited the growth of dermatophytes and molds but had significantly lower effects on the yeast. Sertaconazole nitrate might have advantages over the commonly used antifungals ciclopirox olamine and terbinafine in combating resting spores, which persist in the tissues, and thus in the therapy of recurring dermatomycoses.


Antifungal Agents/pharmacology , Dermatomycoses/drug therapy , Spores, Fungal/drug effects , Antifungal Agents/therapeutic use , Candida albicans/drug effects , Candida parapsilosis/drug effects , Cell Survival , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Dermatomycoses/microbiology , Epidermophyton/drug effects , Fibroblasts , Humans , Imaging, Three-Dimensional , Imidazoles/pharmacology , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Keratinocytes , Lasers , Microbial Sensitivity Tests , Nephelometry and Turbidimetry/methods , Scopulariopsis/drug effects , Terbinafine/pharmacology , Terbinafine/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Trichophyton/drug effects
16.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article En | MEDLINE | ID: mdl-34361069

Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases.


Antifungal Agents/pharmacology , Bone Resorption/drug therapy , Ciclopirox/pharmacology , Osteoclasts/cytology , Osteogenesis , Ovariectomy/adverse effects , Protective Agents/pharmacology , Animals , Bone Resorption/etiology , Bone Resorption/pathology , Cell Differentiation , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , RANK Ligand/genetics , RANK Ligand/metabolism
17.
Cell Death Dis ; 12(6): 562, 2021 05 31.
Article En | MEDLINE | ID: mdl-34059639

Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).


Amyloid Precursor Protein Secretases/metabolism , Antifungal Agents/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Ciclopirox/therapeutic use , Antifungal Agents/pharmacology , Ciclopirox/pharmacology , Humans , Neoplasm Grading
18.
JCI Insight ; 6(8)2021 03 30.
Article En | MEDLINE | ID: mdl-33784251

Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.


Antifungal Agents/pharmacology , Ciclopirox/pharmacology , Cysts , Ferritins/metabolism , Kidney/drug effects , Polycystic Kidney Diseases , Animals , Antifungal Agents/therapeutic use , Cell Proliferation , Ciclopirox/therapeutic use , Collagen , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Mice, Inbred C57BL , Nuclear Receptor Coactivators/metabolism , Organ Size , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant
19.
Cell Death Dis ; 12(3): 251, 2021 03 05.
Article En | MEDLINE | ID: mdl-33674562

Ciclopirox (CPX) is an antifungal drug that has recently been reported to act as a potential anticancer drug. However, the effects and underlying molecular mechanisms of CPX on glioblastoma multiforme (GBM) remain unknown. Bortezomib (BTZ) is the first proteasome inhibitor-based anticancer drug approved to treat multiple myeloma and mantle cell lymphoma, as BTZ exhibits toxic effects on diverse tumor cells. Herein, we show that CPX displays strong anti-tumorigenic activity on GBM. Mechanistically, CPX inhibits GBM cellular migration and invasion by reducing N-Cadherin, MMP9 and Snail expression. Further analysis revealed that CPX suppresses the expression of several key subunits of mitochondrial enzyme complex, thus leading to the disruption of mitochondrial oxidative phosphorylation (OXPHOS) in GBM cells. In combination with BTZ, CPX promotes apoptosis in GBM cells through the induction of reactive oxygen species (ROS)-mediated c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling. Moreover, CPX and BTZ synergistically activates nuclear factor kappa B (NF-κB) signaling and induces cellular senescence. Our findings suggest that a combination of CPX and BTZ may serve as a novel therapeutic strategy to enhance the anticancer activity of CPX against GBM.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bortezomib/pharmacology , Brain Neoplasms/drug therapy , Ciclopirox/pharmacology , Glioblastoma/drug therapy , JNK Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Oxidative Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
20.
Recent Pat Anticancer Drug Discov ; 16(2): 122-135, 2021.
Article En | MEDLINE | ID: mdl-33573561

BACKGROUND: Ciclopirox (CPX), a broad-spectrum fungicide, has been widely used to treat fungal infection on the skin and nails for decades. Recent preclinical and clinical studies have shown that CPX also possesses promising anticancer activity. OBJECTIVE: The objective of this study is to summarize the patents, the pharmacological and toxicological properties, the anticancer activity, and the mechanisms of action of CPX and its derivatives as anticancer agents. METHODS: PubMed and Google using the keywords "ciclopirox", "cancer or tumor" and "patent" were searched, and the identified literature was reviewed. RESULTS: Pharmacological and toxicological profiles from preclinical and clinical studies support that systemic administration of CPX and its derivatives is feasible and safe for cancer treatment. CPX exerts its anticancer activity by inhibiting cell proliferation, inducing apoptosis, suppressing cell migration and invasion, and inhibiting angiogenesis and lymphangiogenesis. Mechanistically, CPX impacts the expression or activities of multiple signaling molecules or pathways, such as ribonucleotide reductase, Myc, DJ-1, Wnt/ß-catenin, DOHH/eIF5A/PEAK1, VEGFR-3/ERK1/2, ATR/Chk1/Cdc25A, and AMPK/TSC/mTORC1. Most of these effects are attributed to iron chelation by CPX. Five patents have been retrieved: four patents on the development of CPX prodrugs to improve the water solubility and bioavailability of CPX, and one patent on the methods of bladder cancer treatment with CPX, CPX-O, or a CPX prodrug. CONCLUSION: CPX has a great potential to be repositioned for cancer therapy.


Antineoplastic Agents/pharmacology , Ciclopirox/pharmacology , Neoplasms/drug therapy , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Antifungal Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Biological Availability , Cell Proliferation/drug effects , Ciclopirox/administration & dosage , Ciclopirox/adverse effects , Drug Repositioning , Humans , Neoplasms/pathology , Patents as Topic , Solubility
...