Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294979

RESUMEN

In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central/enzimología , Ciliopatías/enzimología , Diabetes Mellitus/enzimología , Inflamación/enzimología , Quinasas Relacionadas con NIMA/metabolismo , Neoplasias/enzimología , Animales , Proteínas de Ciclo Celular/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Ciliopatías/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamación/metabolismo , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Quinasas Relacionadas con NIMA/genética , Neoplasias/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/genética
2.
Hum Mol Genet ; 28(21): 3552-3568, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31428781

RESUMEN

Mutations in the LRRK2 kinase are the most common cause of familial Parkinson's disease, and variants increase risk for the sporadic form of the disease. LRRK2 phosphorylates multiple RAB GTPases including RAB8A and RAB10. Phosphorylated RAB10 is recruited to centrosome-localized RILPL1, which may interfere with ciliogenesis in a disease-relevant context. Our previous studies indicate that the centrosomal accumulation of phosphorylated RAB8A causes centrosomal cohesion deficits in dividing cells, including in peripheral patient-derived cells. Here, we show that both RAB8 and RAB10 contribute to the centrosomal cohesion deficits. Pathogenic LRRK2 causes the centrosomal accumulation not only of phosho-RAB8 but also of phospho-RAB10, and the effects on centrosomal cohesion are dependent on RAB8, RAB10 and RILPL1. Conversely, the pathogenic LRRK2-mediated ciliogenesis defects correlate with the centrosomal accumulation of both phospho-RAB8 and phospho-RAB10. LRRK2-mediated centrosomal cohesion and ciliogenesis alterations are observed in patient-derived peripheral cells, as well as in primary astrocytes from mutant LRRK2 mice, and are reverted upon LRRK2 kinase inhibition. These data suggest that the LRRK2-mediated centrosomal cohesion and ciliogenesis defects are distinct cellular readouts of the same underlying phospho-RAB8/RAB10/RILPL1 nexus and highlight the possibility that either centrosomal cohesion and/or ciliogenesis alterations may serve as cellular biomarkers for LRRK2-related PD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrosoma/metabolismo , Ciliopatías/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ciliopatías/enzimología , Ciliopatías/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Fosforilación , Proteínas de Unión al GTP rab/genética
3.
Biochimie ; 166: 286-292, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31212039

RESUMEN

Cilia are microtubule-based organelles located at the cell surface of many eukaryotic cell types. Cilia control different cellular functions ranging from motility (for motile cilia) to signal transduction pathways (for primary cilia). A variety of signaling pathways are coordinated by this organelle during development, cell migration and cell differentiation. Interestingly, aberrant ciliogenesis or altered cilium signaling has been associated with human diseases, notably in cancer. Disruption of cilia through mutation of genes encoding cilia proteins has been also linked to multiple human disorders referred as ciliopathies. Recent studies highlight the interplay between cilia and proteostasis. Here we review findings regarding the crosstalk between cilia and two proteolytic systems, the ubiquitin proteasome system and the autophagy-lysosomal system and discuss the potential implications in human disease including ciliopathies.


Asunto(s)
Autofagia , Cilios/enzimología , Ciliopatías/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Lisosomas/enzimología , Ratones , Transducción de Señal
4.
Small GTPases ; 6(4): 165-73, 2015 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-26399276

RESUMEN

Small GTPases function as universal molecular switches due to the nucleotide dependent conformational changes of their switch regions that allow interacting proteins to discriminate between the active GTP-bound and the inactive GDP-bound states. Guanine nucleotide exchange factors (GEFs) recognize the inactive GDP-bound conformation whereas GTPase activating proteins (GAPs), and the GTPase effectors recognize the active GTP-bound state. Small GTPases are linked to each other through regulatory and effector proteins into functional networks that regulate intracellular membrane traffic through diverse mechanisms that include GEF and GAP cascades, GEF-effector interactions, common effectors and positive feedback loops linking interacting proteins. As more structural and functional information is becoming available, new types of interactions between regulatory proteins, and new mechanisms by which GTPases are networked to control membrane traffic are being revealed. This review will focus on the structure and function of the novel Rab11-FIP3-Rabin8 dual effector complex and its implications for the targeting of sensory receptors to primary cilia, dysfunction of which causes cilia defects underlying human diseases and disorders know as ciliopathies.


Asunto(s)
Membrana Celular/metabolismo , Quinasa I-kappa B/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo , Animales , Membrana Celular/genética , Cilios/genética , Cilios/metabolismo , Ciliopatías/enzimología , Ciliopatías/genética , Ciliopatías/patología , Quinasas del Centro Germinal , Humanos , Quinasa I-kappa B/genética , Complejos Multienzimáticos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA