Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 198
1.
Microb Cell Fact ; 23(1): 139, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750603

BACKGROUND: Increasing concerns about climate change and global petroleum supply draw attention to the urgent need for the development of alternative methods to produce fuels. Consequently, the scientific community must devise novel ways to obtain fuels that are both sustainable and eco-friendly. Bacterial alkanes have numerous potential applications in the industry sector. One significant application is biofuel production, where bacterial alkanes can serve as a sustainable eco-friendly alternative to fossil fuels. This study represents the first report on the production of alkanes by endophytic bacteria. RESULTS: In this study, three Bacillus species, namely Bacillus atrophaeus Camph.1 (OR343176.1), Bacillus spizizenii Camph.2 (OR343177.1), and Bacillus aerophilus Camph.3 (OR343178.1), were isolated from the leaves of C. camphora. The isolates were then screened to determine their ability to produce alkanes in different culture media including nutrient broth (NB), Luria-Bertani (LB) broth, and tryptic soy broth (TSB). Depending on the bacterial isolate and the culture media used, different profiles of alkanes ranging from C8 to C31 were detected. CONCLUSIONS: The endophytic B. atrophaeus Camph.1 (OR343176.1), B. spizizenii Camph.2 (OR343177.1), and B. aerophilus Camph.3 (OR343178.1), associated with C. camphora leaves, represent new eco-friendly approaches for biofuel production, aiming towards a sustainable future. Further research is needed to optimize the fermentation process and scale up alkane production by these bacterial isolates.


Alkanes , Bacillus , Biofuels , Cinnamomum camphora , Bacillus/metabolism , Bacillus/isolation & purification , Bacillus/classification , Biofuels/microbiology , Cinnamomum camphora/metabolism , Cinnamomum camphora/microbiology , Alkanes/metabolism , Plant Leaves/microbiology , Endophytes/metabolism , Endophytes/isolation & purification , Culture Media
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 779-788, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621882

This study aims to investigate the essential oil(EOL) of Cinnamomum camphora regarding its anti-depression effect and mechanism in regulating inflammatory cytokines and the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway. A mouse model of depression was established by intraperitoneal injection of lipopolysaccharide(LPS). Open field, elevated plus maze, and forced swimming tests were carried out to examine mouse behaviors. Western blot and qRT-PCR were employed to determine the expression of proteins and genes in the Nrf2/HO-1 pathway in the hippocampus. The levels of tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1ß in the serum were measured by enzyme-linked immunosorbent assay(ELISA). The changes of apoptosis in mouse brain were detected by Tunel staining. Compared with the blank control group, the model group showed shortened distance travelled and time spent in the central zone and reduced number of entries in the central zone in the open field test. In the elevated plus maze test, the model group showed reduced open arm time(OT%) and open arm entries(OE%). In the force swimming test, the model group showed extended duration of immobility compared with the blank control group. Compared with the model group, the treatment with EOL significantly increased the distance travelled and time spent in the central zone and increased the number of entries in the central zone in the open field test. In addition, EOL significantly increased the OT% and OE% in the elevated plus maze and shor-tened the immobility duration in the forced swimming test. The model group showed lower expression levels of Nrf2 and HO-1 and hig-her levels of TNF-α, IL-6, and IL-1ß than the blank control group. Compared with the model group, the treatment with EOL up-regulated the expression levels of Nrf2 and HO-1 and lowered the levels of TNF-α, IL-6, and IL-1ß. The Tunel staining results showed that the apoptosis rate in the brain tissue of mice decreased significantly after the treatment with EOL. To sum up, EOL can mitigate the depression-like behaviors of mice by up-regulating the expression of Nrf2 and HO-1 and preventing hippocampal inflammatory damage. The findings provide empirical support for the application of EOL and aromatherapy in the treatment of depression.


Cinnamomum camphora , Oils, Volatile , Female , Mice , Animals , Cytokines/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6 , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Depression/drug therapy , Oils, Volatile/pharmacology , Lipopolysaccharides/pharmacology
3.
Ying Yong Sheng Tai Xue Bao ; 35(2): 501-506, 2024 Feb.
Article En | MEDLINE | ID: mdl-38523108

To explore the mixing effect of litter decomposition and the role of detritivores, we conducted a laboratory-based microcosm experiment to study the influence of detritivores on litter mixture decomposition by using two litter species with contrasting quality, i.e., Cinnamomum camphora and Michelia × alba, and a detritivore (isopoda). After 100 days incubation, the decomposition rate of litter mixture was 52.1%, slower than that of M. alba (62.6%) and significantly faster than that of C. camphora (33.6%). The addition of isopods significantly increased litter decomposition rate, with C. camphora, M. alba, and the mixture increased by 14.4%, 20.1% and 22.1%, respectively. There was no significant mixing effect without isopods. Adding isopods significantly promoted the mixing effect of litter decomposition, with a value of the litter mixture decomposition effect of 8.6%. The detritivores increased litter decomposition rate and mixing effect through increasing consumption of litter with better quality.


Cinnamomum camphora , Ecosystem , Plant Leaves
4.
Molecules ; 29(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38398548

The ultrasonic-assisted extraction (UAE) method was employed to separate Cinnamomum camphora proanthocyanidin-rich extracts (PCEs). This extraction process was optimized by the Box-Behnken design, and the optimal conditions, on a laboratory scale, were as follows: an ethanol concentration of 75%, a liquid-to-solid ratio of 24 mL/g, an ultrasonic time of 39 min, and an ultrasonic power of 540 W. Under the obtained conditions, the PCE yield extracted by UAE was higher than that from heat reflux extraction and soaking extraction. An ultra-performance liquid chromatography-tandem mass spectrometry analysis was employed to characterize the phloroglucinolysis products of the C. camphora PCEs, by which epigallocatechin, catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were identified as the terminal units; epigallocatechin, epicatechin, and (-)-epigallocatechin-3-O-gallate were recognized as extension units. The C. camphora PCEs possessed higher anti-ultraviolet activity in vitro compared with the commercially available sunscreen additive of benzophenone with respect to their ethanol solutions (sun protection factor of 27.01 ± 0.68 versus 1.96 ± 0.07 at a concentration of 0.09 mg/mL) and sunscreens (sun protection factor of 17.36 ± 0.62 versus 14.55 ± 0.47 at a concentration of 20%). These results demonstrate that C. camphora PCEs possess an excellent ultraviolet-protection ability and are promising green sunscreen additives that can replace commercial additives.


Catechin , Cinnamomum camphora , Proanthocyanidins , Ultrasonics , Sunscreening Agents , Ethanol/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
J Agric Food Chem ; 72(5): 2689-2696, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38267394

Camphor has been used as an effective repellent and pesticide to stored products for a long history, but Orthaga achatina (Lepidoptera: Pyralidae) has evolved to specifically feed on the camphor tree Cinnamomum camphora. However, the behavioral response of O. achatina to camphor and the molecular basis of camphor perception are totally unknown. Here, we demonstrated that both male and female adults were behaviorally attracted to camphor, suggesting the adaptation of O. achatina to and utilization of camphor as a signal of C. camphora. Second, in 40 O. achatina OR genes obtained by analyzing antenna transcriptomes, only OachOR16/Orco significantly responded to camphor in the Xenopus oocyte system. Finally, by molecular docking analysis and site-directed mutagenesis, the Ser209 residue is confirmed to be essential for binding of the oachOR16 with camphor. This study not only reveals the camphor-based host plant choice and olfactory mechanisms of O. achatina but also provides a molecular target for screening more potential insect repellents.


Cinnamomum camphora , Insect Repellents , Moths , Receptors, Odorant , Animals , Camphor/chemistry , Cinnamomum camphora/chemistry , Receptors, Odorant/genetics , Molecular Docking Simulation , Insect Repellents/chemistry
6.
BMC Microbiol ; 24(1): 18, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38200417

BACKGROUND: Cinnamomum camphora (L.) Presl (C. camphora) is an evergreen broad-leaved tree cultivated in subtropical China. The use of C. camphora as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear. MATERIALS AND METHODS: In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions. RESULTS: The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality. CONCLUSION: Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.


Cinnamomum camphora , Microbiota , China , Soil , Trees
7.
Environ Res ; 241: 117714, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37989462

Cyanobacterial blooms cause serious environmental issues, and plant secondary metabolites are considered as new algaecide for controlling them. Cinnamomum camphora produces a wide spectrum of terpenoids and has 4 main chemotypes, including linalool, camphor, eucalyptol and borneol chemotype. To develop the new cyanobacterial algaecide by using suitable chemotype of Cinnamomum camphora and the main terpenoids, we analyzed the terpenoid composition in the 4 chemotype extracts, evaluated the algicidal effects of the extracts and their typical monoterpenoids on Microcystis aeruginosa, and investigated the algicidal mechanism of the stronger algicidal agents. Among the 4 chemotypes, eucalyptol and borneol chemotype extracts exhibited stronger algicidal effects. In the 4 chemotype extracts, monoterpenoids were the main compounds, of which linalool, camphor, eucalyptol and borneol were the typical components. Among the 4 typical monoterpenoids, eucalyptol and borneol showed stronger algicidal effects, which killed 78.8% and 100% M. aeruginosa cells, respectively, at 1.2 mM after 48 h. In 1.2 mM eucalyptol and borneol treatments, the reactive oxygen species levels markedly increased, and the caspase-3-like activity also raised. With prolonging the treatment time, M. aeruginosa cells gradually shrank and wrinkled, and the cell TUNEL fluorescence intensity and DNA degradation gradually enhanced, indicating that the lethal mechanism is causing apoptosis-like programmed cell death (PCD). Therefore, eucalyptol and borneol chemotype extracts and their typical monoterpenoids have the potential for developing as algaecides to control cyanobacteria through triggering apoptosis-like PCD.


Cinnamomum camphora , Herbicides , Microcystis , Monoterpenes/pharmacology , Camphor/pharmacology , Eucalyptol/pharmacology , Terpenes/pharmacology
8.
Plant Sci ; 339: 111956, 2024 Feb.
Article En | MEDLINE | ID: mdl-38101618

Cinnamomum camphora has great economic value for its wide utilization in traditional medicine and furniture material, and releases lots of monoterpenes to tolerate high temperature. To uncover the adjusting function of monoterpenes on primary metabolism and promoting their utilization as anti-high temperature agents, the photosynthetic capacities, primary metabolite levels, cell ultrastructure and associated gene expression were surveyed in C. camphora when it was blocked monoterpene biosynthesis with fosmidomycin (Fos) and fumigated with camphor (a typical monoterpene in the plant) under high temperature (Fos+38 °C+camphor). Compared with the control (28 °C), high temperature at 38 °C decreased the starch content and starch grain size, and increased the fructose, glucose, sucrose and soluble sugar content. Meanwhile, high temperature also raised the lipid content, with the increase of lipid droplet size and numbers. These variations were further intensified in Fos+ 38 °C treatment. Compared with Fos+ 38 °C treatment, Fos+ 38 °C+camphor treatment improved the starch accumulation by promoting 4 gene expression in starch biosynthesis, and lowered the sugar content by suppressing 3 gene expression in pentose phosphate pathway and promoting 15 gene expression in glycolysis and tricarboxylic acid cycle. Meanwhile, Fos+ 38 °C+camphor treatment also lowered the lipid content, which may be caused by the down-regulation of 2 genes in fatty acid formation and up-regulation of 4 genes in fatty acid decomposition. Although Fos+ 38 °C+camphor treatment improved the photosynthetic capacities in contrast to Fos+ 38 °C treatment, it cannot explain the variations of these primary metabolite levels. Therefore, camphor should adjust related gene expression to maintain the primary metabolism in C. camphora tolerating high temperature.


Camphor , Cinnamomum camphora , Camphor/chemistry , Camphor/metabolism , Cinnamomum camphora/chemistry , Cinnamomum camphora/genetics , Cinnamomum camphora/metabolism , Temperature , Monoterpenes/metabolism , Sugars/metabolism , Fatty Acids/metabolism , Starch/metabolism , Lipids
9.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article En | MEDLINE | ID: mdl-38006232

The distribution of antibiotic-resistance genes (ARGs) in environmental soil is greatly affected by livestock and poultry manure fertilization, the application of manure will lead to antibiotic residues and ARGs pollution, and increase the risk of environmental pollution and human health. Cinnamomum camphora is an economically significant tree species in Fujian Province, China. Here, through high-throughput sequencing analysis, significant differences in the composition of the bacterial community and ARGs were observed between fertilized and unfertilized rhizosphere soil. The application of chicken manure organic fertilizer significantly increased the relative abundance and alpha diversity of the bacterial community and ARGs. The content of organic matter, soluble organic nitrogen, available phosphorus, nitrate reductase, hydroxylamine reductase, urease, acid protease, ß-glucosidase, oxytetracycline, and tetracycline in the soil of C. camphora forests have significant effects on bacterial community and ARGs. Significant correlations between environmental factors, bacterial communities, and ARGs were observed in the rhizosphere soil of C. camphora forests according to Mantel tests. Overall, the findings of this study revealed that chicken manure organic fertilizer application has a significant effect on the bacterial community and ARGs in the rhizosphere soil of C. camphora forests, and several environmental factors that affect the bacterial community and ARGs were identified.


Cinnamomum camphora , Microbiota , Animals , Humans , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Chickens , Manure/microbiology , Cinnamomum camphora/genetics , Genes, Bacterial , Fertilizers , Rhizosphere , Soil Microbiology , Bacteria/genetics , Microbiota/genetics , Forests
10.
Sci Rep ; 13(1): 16910, 2023 10 07.
Article En | MEDLINE | ID: mdl-37805611

The root system is an important organ for nutrient uptake and biomass accumulation in plants, while biomass allocation directly affects essential oils content, which plays an essential role in plant growth and development and resistance to adverse environmental conditions. This study was undertaken to investigate the differences and correlation of biomass allocation, root traits and essential oil content (EOC), as well as the adaptations of camphor tree with different chemical types to the ionic rare earth tailing sand habitats. Data from 1-year old cutting seedlings of C. camphora showed that the biomass of C. camphora cuttings was mainly distributed in root system, with the ratio of root biomass 49.9-72.13% and the ratio of root to canopy 1.00-2.64. The total biomass was significantly positively correlated with root length (RL), root surface area (RSA) and dry weight of fine roots (diameter ≤ 2 mm) (P < 0.05). Root biomass and leaf biomass were negatively and positively with specific root length (SRL) and specific root surface area (SRSA), respectively. Leaf biomass presented a positive effect on EOC (P < 0.05), with the correlation coefficient of 0.808. The suitability sort of these camphor trees was as follows: C. camphora ß-linalool, C. camphora α-linaloolII, C. camphora α-linaloolI being better adapted to the ionic rare earth tailings substrate, C. camphora citral being the next, and C. porrectum ß-linalool and C. camphora borneol being the least adaptive. EOC played a positive role in the adaptation of C. camphora (R2 = 0.6099, P < 0.05). Therefore camphor tree with linalool type is the appropriate choice in the ecological restoration of ionic rare earth tailings. The study could provide scientific recommendations for the ecological restoration of ionic rare earth tailings area combined with industrial development.


Cinnamomum camphora , Oils, Volatile , Seedlings , Cinnamomum camphora/chemistry , Oils, Volatile/pharmacology , Plant Leaves/chemistry
11.
Sci Total Environ ; 904: 166741, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37659523

Urbanization brings numerous benefits to residents, but it also introduces complex, variable, and heterogeneous habitat conditions to urban plants, resulting in an arid and hot urban environment that decreases tree growth and the ecological service capacity of trees. In this study, we evaluated leaf hydraulic, economic, and anatomical traits and their covariations of Cinnamomum camphora along an urban-rural gradient in Hefei, Eastern China. We found that Cinnamomum camphora in urban adopted a conservative hydraulic strategy with low leaf turgor loss point (Tlp), leaf hydraulic conductance (Kleaf), and leaf water potential resulting in 50 % loss of hydraulic conductance (P50), as well as a quick investment-return economic strategy with low unit leaf dry matter content (LMA) and high leaf nitrogen content (Leaf N). P50, Kleaf and LMA were significantly positively correlated with the urban-rural gradient (PC1urban-rural gradient), while Leaf N exhibited a negative correlation with it. The results showed a trade-off between intraspecific safety and efficiency in leaf hydraulic traits along the urban-rural gradient and an intraspecific coordinated variation in leaf hydraulic and economic traits. In addition, based on the analysis of a trait coordination network, it was revealed that leaf mesophyll and stomata were key structures for trait adjustment and coordination. Furthermore, our findings offer a significant theoretical underpinning for the effective management of landscape trees and the strategic planning of urban tree species.


Cinnamomum camphora , Phenotype , Ecosystem , Trees , Water , Plant Leaves
12.
BMC Biol ; 21(1): 192, 2023 09 12.
Article En | MEDLINE | ID: mdl-37697363

BACKGROUND: Lauraceae is well known for its significant phylogenetic position as well as important economic and ornamental value; however, most evergreen species in Lauraceae are restricted to tropical regions. In contrast, camphor tree (Cinnamomum camphora) is the most dominant evergreen broadleaved tree in subtropical urban landscapes. RESULTS: Here, we present a high-quality reference genome of C. camphora and conduct comparative genomics between C. camphora and C. kanehirae. Our findings demonstrated the significance of key genes in circadian rhythms and phenylpropanoid metabolism in enhancing cold response, and terpene synthases (TPSs) improved defence response with tandem duplication and gene cluster formation in C. camphora. Additionally, the first comprehensive catalogue of C. camphora based on whole-genome resequencing of 75 accessions was constructed, which confirmed the crucial roles of the above pathways and revealed candidate genes under selection in more popular C. camphora, and indicated that enhancing environmental adaptation is the primary force driving C. camphora breeding and dominance. CONCLUSIONS: These results decipher the dominance of C. camphora in subtropical urban landscapes and provide abundant genomic resources for enlarging the application scopes of evergreen broadleaved trees.


Cinnamomum camphora , Cinnamomum camphora/genetics , Phylogeny , Plant Breeding , Sequence Analysis, DNA , Genomics
13.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2113-2122, 2023 Aug.
Article En | MEDLINE | ID: mdl-37681375

To explore the adaptive mechanism of leaf photosynthetic capacity in different light environments within Cinnamomum camphora canopy and enhance carbon sequestration, we investigated morphological structures, nutritional and physiological traits and photosynthetic characteristics of leaves in different orientations of C. camphora canopy, southern side in the outer layer (100% full light), southern side in the inner layer (34% full light) and northern side (21% full light). We analyzed the main limitation resulting in down-regulation of photosynthetic capacity in low light environments. Results showed that specific leaf weight, the thickness of lower and upper epidermal cuticle, lower epidermis, palisade tissue as well as cell number and width of palisade tissue, the thickness ratio of palisade to spongy tissue, cell structure closely degree significantly decreased with decreasing light intensity within canopy, opposite to the responses of spongy tissue thickness, cell length-width ratio of palisade tissue, and cell structure loose degree. The contents of leaf carbon, soluble protein, soluble sugar and starch were significantly lower in two low light environments compared with full light, whereas nitrogen content was markedly higher in north side. Low light prominently reduced gas exchange parameters, i.e., net photosynthetic rate (Pn), dark respiration rate, stomatal conductance to CO2(gsc), mesophyll conductance to CO2(gm), total conductance to CO2(gtot), intercellular CO2 concentration (Ci), CO2 concentration at the chloroplast (Cc). Pn was positively correlated with gsc, gm, gtot and Cc. There were no differences in maximum quantum photochemical efficiency, actual quantum photochemical efficiency, photochemical quenching coefficient, maximum rate of Rubisco carboxylation (Vc max) and maximum rate of electron transport (Jmax) among light environments. Vc max and Jmax were positively correlated to Pn. Of the shading-induced limitations to photosynthesis, gm limitation was the most important, and gsc limitation was enhanced with further weakened light intensity while biochemical limitation was rather limited. In summary, the results suggested that full light could improve leaf photosynthetic potential in C. camphora canopy leaves, reduce the effects of gm and gsc limitation on photosynthesis, and consequently enhance carbon assimilation capacity.


Cinnamomum camphora , Carbon Dioxide , Photosynthesis , Light , Carbon
14.
Microb Cell Fact ; 22(1): 143, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37533061

Fungal producing potency of camptothecin (CPT) raise the hope for their usage to be a platform for industrial production of CPT, nevertheless, attenuation of their productivity of CPT with the subculturing and preservation is the challenge. So, screening for novel endophytic fungal isolates with a reliable CPT-biosynthetic stability was the objective. Among the isolated endophytic fungi from the tested medicinal plants, Aspergillus terreus OQ642314.1, endophyte of Cinnamomum camphora, exhibits the highest yield of CPT (89.4 µg/l). From the NMR, FT-IR and LC-MS/MS analyses, the extracted CPT from A. terreus gave the same structure and molecular mass fragmentation pattern of authentic CPT (349 m/z). The putative CPT had a significant activity against MCF7 (0.27 µM) and HEPG-2 (0.8 µM), with a strong affinity to inhibits the human Topoisomerase 1 activity (IC50 0.362 µg/ml) as revealed from the Gel-based DNA relaxation assay. The purified CPT displayed a strong antimicrobial activity for various bacterial (E. coli and B. cereus) and fungal (A. flavus and A. parasiticus) isolates, ensuring the unique tertiary, and stereo-structure of A. terreus for penetrating the microbial cell walls and targeting the topoisomerase I. The higher dual activity of the purified CPT as antimicrobial and antitumor, emphasize their therapeutic efficiency, especially with growth of the opportunistic microorganisms due to the suppression of human immune system with the CPT uses in vivo. The putative CPT had an obvious activity against the tumor cell (MCF7) metastasis, and migration as revealed from the wound healing assay. The overall yield of A. terreus CPT was maximized with the Blackett-Burman design by twofolds increment (164.8 µg/l). The CPT yield by A. terreus was successively diminished with the multiple fungal subculturing, otherwise, the CPT productivity of A. terreus was restored, and increased over the zero culture upon coculturing with C. camphora microbiome (1.5% w/v), ensuring the restoring of CPT biosynthetic potency of A. terreus by the plant microbiome-derived chemical signals "microbial communication". This is the first report exploring the feasibility of A. terreus "endophyte of C. camphora" to be a preliminary platform for commercial production of CPT with a reliable sustainability upon uses of indigenous C. camphora microbiome.


Anti-Infective Agents , Cinnamomum camphora , Microbiota , Humans , Endophytes/chemistry , Chromatography, Liquid , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Tandem Mass Spectrometry , Camptothecin/pharmacology , Camptothecin/chemistry
15.
Chem Biodivers ; 20(8): e202300666, 2023 Aug.
Article En | MEDLINE | ID: mdl-37533252

Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1 mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100 ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.


Cinnamomum camphora , Cinnamomum , Oils, Volatile , Cinnamomum camphora/chemistry , Cinnamomum/chemistry , Acetylcholinesterase , Oils, Volatile/chemistry , Pharmaceutical Preparations , Plant Leaves/chemistry
16.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Article Zh | MEDLINE | ID: mdl-37282859

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Alkyl and Aryl Transferases , Cinnamomum camphora , Cinnamomum camphora/enzymology , Alkyl and Aryl Transferases/chemistry
17.
Sci Total Environ ; 895: 165157, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37391146

Grasping information about street trees can assist urban environmental managers in quantifying and evaluating their costs and ecological benefits. Street view imagery has the potential for urban street tree surveys. However, few studies have been conducted on the inventory of street tree species, size structures and diversity based on street view imagery at the urban scale. In this study, we tried to conduct a survey of street trees in urban areas of Hangzhou using street view images. First, we constructed a size reference items system and determined that using it for street view measurements of street trees was comparable to field measurements results (R2 = 0.913-0.987). On this basis, we investigated the distribution characteristics and differences of street trees in Hangzhou using Baidu Street View and found that Cinnamomum camphora was the dominant tree species in Hangzhou (46.58 %), and the high proportion made urban street trees susceptible to ecological hazards. In addition, surveys conducted separately in various urban districts revealed that the diversity of street trees in new urban areas was smaller and less uniform. Additionally, as the gradient got further away from the city center, the street trees are smaller, the diversity first increased and then decreased, and the evenness gradually decreased. This study analyzes the use of Street View to investigate the distribution of species, size structure, and diversity of urban street trees. The use of street view imagery will simplify the collection of data on urban street trees and provide urban environmental managers with a foundation for strategy development.


Cinnamomum camphora , Trees , Cities , Surveys and Questionnaires
18.
Molecules ; 28(9)2023 Apr 27.
Article En | MEDLINE | ID: mdl-37175177

The chemical investigation of branches of Cinnamomum camphora chvar. Borneol guided by mosquito larvicidal activity led to the isolation of fourteen known lignans (1-14). Their structures were elucidated unambiguously based on comprehensive spectroscopic analysis and comparison with the literature data. This is the first report of these compounds being isolated from branches of Cinnamomum camphora chvar. Borneol. Compounds 3-5 and 8-14 were isolated from this plant for the first time. All compounds isolated were subjected to anti-inflammatory, mosquito larvicidal activity and cytotoxic activity evaluation. Compounds (1-14) showed significant mosquito larvicidal activity against Culex pipiens quinquefasciatus with lethal mortality in 50% (LC50), with values ranging from 0.009 to 0.24 µg/mL. Among them, furofuran lignans(1-8) exhibited potent mosquito larvicidal activity against Cx. p. quinquefasciatus, with LC50 values of 0.009-0.021 µg/mL. From the perspective of a structure-activity relationship, compounds with a dioxolane group showed high mosquito larvicidal activity and have potential to be developed into a mosquitocide.


Aedes , Cinnamomum camphora , Culex , Culicidae , Insecticides , Lignans , Animals , Lignans/pharmacology , Lignans/analysis , Insecticides/chemistry , Larva , Plant Extracts/chemistry , Plant Leaves/chemistry
19.
Plant Physiol Biochem ; 198: 107672, 2023 May.
Article En | MEDLINE | ID: mdl-37004435

Isoprenoids serve important functions in protecting plant membranes against high temperature. Cinnamomum camphora is an excellent economic tree species, and releases plenty of monoterpenes. To uncover the protective mechanism of monoterpenes on the membrane system for promoting their development and utilization as anti-high temperature agents, the membrane permeability, cell ultrastructure, membrane lipid variations and related gene expression were investigated in C. camphora fumigated with camphor, one of the main monoterpenes in the plant, after fosmidomycin (Fos) blocking the monoterpene biosynthesis under high temperature (Fos+38 °C + C). High temperature at 38 °C caused the rupture of plasma as well as chloroplast and mitochondrion membranes, deformation of chloroplasts and mitochondria, and electrolyte leakage in C. camphora. High temperature with Fos treatment (Fos+38 °C) aggravated the damage, while camphor fumigation (Fos+38 °C + C) showed alleviating effects. High temperature at 38 °C disturbed the membrane lipid equilibrium by reducing the levels of 14 phosphatidylcholine, 8 phosphatidylglycerol and 6 phosphatidylethanolamine molecules, and increasing the levels of 8 phosphatidic acid, 4 diacylglycerol, 5 phosphatidylinositol, 16 sphingomyelin and 5 ceramide phosphoethanolamine molecules. Fos+38 °C treatment primarily exhibited intensifying effects on the disturbance, while these membrane lipid levels in Fos+38 °C + C5 (5 µM camphor) treatment exhibited variation tendencies to the control at 28 °C. This should result from the expression alterations of the genes related with phospholipid biosynthesis, fatty acid metabolism, and sphingolipid metabolism. It can be speculated that camphor can maintain membrane lipid stabilization in C. camphora under high temperature by acting as a signaling molecule.


Camphor , Cinnamomum camphora , Camphor/pharmacology , Cinnamomum camphora/genetics , Monoterpenes/metabolism , Cell Membrane , Membrane Lipids/metabolism
20.
Genomics ; 115(3): 110631, 2023 05.
Article En | MEDLINE | ID: mdl-37120099

Many processes, such as growth, aging, and adaptation to abiotic stress, are regulated in plants by NAC transcription factors. In woody plants, NAC transcription factors acts as a primary switch that regulates secondary xylem development by activating various downstream transcription factors and modulating expression levels of genes involved in the synthesis of the secondary cell wall. Our team had previously sequenced the whole genome of the camphor tree (Cinnamomum camphora). Here, we performed a detailed analysis of the NAC gene family of C. camphora and examined its evolutionary history. The genomic sequences of 121 NAC genes of C. camphora were identified and classified into 20 subfamilies in 2 major classes based on the phylogenetic analysis and structural features. Expansion of the CcNAC gene family occurred mainly by fragment replication and was influenced by the purifying selection. By analyzing predicted interactions of the homologous AtNAC proteins, we identified five CcNACs that potentially regulate xylem development in C. camphora. RNA sequencing revealed distinct expression profiles of CcNACs in seven different plant tissues. Subcellular localization prediction revealed that 120, 3, and 2 CcNACs have biological functions in the nucleus, cytoplasm, and chloroplast, respectively. Furthermore, we verified expression patterns of five CcNACs (CcNAC012, CcNAC028, CcNAC055, CcNAC080, and CcNAC119) in various tissue types using qRT-PCR. Our results will facilitate further in-depth studies of the molecular mechanisms by which CcNAC transcription factors regulate wood formation and other processes in C. camphora.


Cinnamomum camphora , Wood , Wood/metabolism , Genes, Plant , Cinnamomum camphora/chemistry , Cinnamomum camphora/genetics , Cinnamomum camphora/metabolism , Phylogeny , Transcription Factors/metabolism , Plant Proteins/genetics
...